Summary of Tests for Series

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
<i>n</i> th-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	<i>r</i> < 1	$ r \ge 1$	Sum: $S = \frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Sum: $S = b_1 - L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	$p \leq 1$	
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_N \le a_{N+1}$
Integral (f is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx \text{ converges}$	$\int_{1}^{\infty} f(x) dx \text{diverges}$	Remainder: $0 < R_N < \int_N^\infty f(x) dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty}\sqrt[n]{ a_n } > 1$	Test is inconclusive if $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$	Test is inconclusive if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$
Direct Comparison ($a_n, b_n > 0$)	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges	
Limit Comparison (<i>a_n, b_n</i> > 0)	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges	$\overline{\lim_{n \to \infty} \frac{a_n}{b_n}} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges	

Department of Mathematics, Sinclair Community College, Dayton, OH (recreated from page 644 in *Calculus 8th edition* by Larson, Hostetler, Edwards)