
Chapter 1 Notes and elaborations for STAT 141-Introduction to Statistics

Assignment

Read all of Chapter 1 except for the following: you may skip the parts about nominal, ordinal, interval,
and ratio levels of measurement.  What the book calls the Hawthorne effect is what most of the rest of
the world (including myself) call the placebo effect.  You may skip section 1-5.  Also read chapter 14-
1. for another take on “Stratified Sampling” and “Cluster Sampling.”  In all places in this book you
may skip the discussion about using a table of random numbers.  We have better ways these days.

You should be able to do the following exercises:  (Answers are in an appendix in the book.)

1-1 problems 1-15 only the odds on page 5.
1-2 problems 1-15 only the odds on page 10.
1-3 problems 7-15 only the odds on page 17.
1-4 problems 1, 3, 7, 9, 11,15, 17, 23, 25 starting on page 24.

The book does a pretty good job most of the time.  However, I think the book misses quite a few key
points in Chapter 1 and emphasizes some items that aren’t relevant to the scope of this course.  Below I
will  attempt  to  fix  what  I  think is  broken and/or  needs some emphasis.   After reading the  above
material, please read what I’ve written below.

There will be a quiz on the material in Chapter 1.

What is statistics?

Statistics is a pretty broad field of the mathematical sciences, and for most definitions of the field, one
can find examples  that  break the  definition,  including mine.   Statistics  is  the  body of  knowledge
pertaining to understanding data.   This includes both the art and science of:   experimental  design,
organization  and  summarization  of  data,  data  analysis,  and  making  predictions  and  drawing
conclusions from data.  It is the interface of science with both observation and modeling.  It is almost
completely predicated on probability theory.

A combination of probability theory and statistics will undoubtedly make you a better hold'em player.
Although I say that tongue-in-cheek, much of basic probability was discovered via games-of-chance by
Gerolamo Cardano in the 1500s.  

A fun link (but unnecessary):  http://en.wikipedia.org/wiki/Gerolamo_Cardano 

There are two primary reasons that you should know something about statistics.  

1)   Your field of study and/or job requires it.

•  Statistics is the interface to scientific experiments and observations, and every pure scientific field,
i.e., astronomy, physics, chemistry, medicine, biology, zoology, engineering, etc., utilizes the power of
statistics.  Indeed, they would not be what they are without it.  Virtually everything scientific in nature
requires experiments and observations of real data, which is statistics.  



•  The social sciences, such as political science, sociology, economics, and  psychology to name just a
few, rely on surveys, designed experiments, regression theory, etc., to do just about anything. 

• Statistics is also prevalent in the professional fields, such as business, medicine, education, etc.  In
fact,  statistics  is  huge  here.   Reliability  analysis,  market  predictions,  development  and  testing  of
product, allocation of educational funds, and so much more, are all based on statistics.

• And don’t forget industry; Six Sigma programs are everywhere (Six Sigma is a data-driven approach
and methodology, i.e., statistical approach for eliminating defective products in industry).  Japan’s post
World War II economic boom is at least partially due to industrial statistics.  Mil-specs, ISO, etc.

•  Maybe the fine arts as a field doesn’t really need it.

2)   You are a citizen in a capitalistic republic.  Everyone is trying to sell you their products, and every
politician is trying to gain your favor.  Understanding the basics of statistics is a prerequisite for not
being swindled.  

• ‘Political statistics’ is more than just reading poll results, but understanding if they are constructed
correctly and what actual information can be taken from them.  If your BFF Doug Awell takes a poll on
you favorite social-networking site and finds that 84% of the people support hydraulic fracturing in
Pennsylvania, what information do you actually have?  (Answer: you know that the type of people that
answer polls on headbuk.com are in favor or fracking, and that’s about it.)

• Oftentimes, whomever is selling you something, whether it be an idea or a product, will feed you
numbers/information biased in their favor, for whatever purpose.  As a consumer, you should question
where the numbers/information came from so you can make an informed decision about the accuracy
of the numbers/information.  A basic understanding of statistics will help you do this.   

• For example, I’m sure you’ve all heard the middle class is disappearing.  Is it true?  Are the rich
getting richer while the poor are getting poorer?  What effect will tax changes have?  People debate this
all the time, sometimes bitterly, and they all cite facts and figures from ‘studies’.  What is the truth?  Or
maybe a better question is, what information is closest to the truth?  How can we tell?

One last thought...

Statistics is one of the most profoundly misunderstood and abused fields.  I can not emphasize this
enough.

•  “Figures lie and liars figure” and “lies, damned lies, and statistics” are a result of decades of poor
statistics understanding both on the part of experimenters (both intentional and unintentional) and the
public.

•  Statistics, when done right, can’t lie.  Indeed, we can use statistics to get as close to the truth as
possible.  Mind you, I am not saying the pure truth can ever be obtained.

So, let’s get started...



Sampling Theory
We begin  with  basic  definitions  relative  to  sampling  theory.   We then briefly  discuss  some basic
sampling methods and we end with the two types of studies.

_____________
1.1 Definitions

Definition:  A  population consists of all  the subjects being studied.  The population might not be
human or animal.  It could very well be jelly-donuts.

________________________________
Example 1.1.0

i)  If you’re looking at gathering data concerning the nutritional value of the lunches served in public
schools in the last year, your population consists of every lunch served in the public schools in the last
year.  That’s about 4.9 billion lunches based on statistics for the year 2019.

ii)  If you’re studying side effects of a new medicine, your population consists of every individual that
might every take the new medicine.

iii)  If you’re trying to determine if a particular medication will stop the onset of type II diabetes, then
your population probably consists of all people that are likely to get type II diabetes.

iv)  If you’re trying to ascertain what percentage of bass (a type of fish) in Cowanesque Lake have a
particular disease destroying their reproductive abilities, your population consists  of all  the bass in
Cowanesque Lake that are mature enough to reproduce.

v) If you want to find the average number of chocolate chips in a Chips O’Boy cookie on any given
day, your population is every Chips O’Boy cookie in the entire world on that day.  If you want the
average number of chocolate chips in a Chips O’Boy cookie over a given time period, say for example,
during October 2013,  then your population is  every Chips O’Boy cookie in the world during that
month.  
________________________________

Note that, most often, it is entirely impractical and/or too costly to study the entire population.  So, we
take samples.  There are many ways to take samples, which will be discussed in more detail later.  Keep
in mind that our ultimate goal is to take samples (minimizing bias, which we will define later) and use
the  information  we  gather  from these  samples  to  make  inferences  about  the  entire  population  in
general.

Definition:  A sample is a subset of the population.

________________________________
Example 1.1.1

Considering example (i) above about school lunches:  Clearly, it’s inefficient to record data about 4.9
billion lunches.  So, we take a sample.  For example, we could record data from two school districts in
each county every third day for one month of the year.  This sample will give a good estimate of the
overall nutritional value of the school lunches served in our nation’s public schools.



Considering (ii) above about a medication: It is not hard to see that we will most likely never get our
hands on the entire population in this scenario.  Indeed, we must be extra cautious in the sampling
procedure we decide to use in such a situation.  For example, it would probably be easiest to maintain a
hotline (where the number is on the medication packaging) for people to call in and report side effects.
But this assumes that (a) the consumer actually reads the packaging and (b) the consumer will take the
time to call and report possible side effects, if they are even distinguishable from other factors, e.g, was
it the new medicine, or the all you can eat shrimp at Red Lobster?  At this point, it should be clear that
an important question we should ask every time we take a sample: is the subset of likely respondents
truly representative of the population?  

Considering  (iii) above: The only way we could get the whole population here is if we knew how to
predict  diabetes  with  100%  accuracy,  and  we  don’t,  so  getting  the  entire  population  is  literally
impossible in this scenario.   Things get trickier in this situation, too.  Intuitively, we take a sample of
people who are at a certain level of risk for type II diabetes and give them the medicine.  But we have
to be careful in choosing this sample.  Remember that a sample is a subset of the population.  So, we
want every person in our sample to have a very high probability of getting type II diabetes.

Considering (iv) above: We could actually get the whole population here, but we’d probably have to
drain  the lake or something to be sure we had them all.  So, we take a sample, usually via capture and
release method.  This is a method of sampling commonly used in studying wildlife  where we put some
kind of mark on the wildlife and release it back into the wild.  This way, if we take another sample, we
don’t record data twice for the same animal. 

Considering (v) above: If only we could get the entire population of cookies!  But we can’t, so we’d
have to take a sample.  In this scenario, it’s probably easiest to go to all the factories that make the
cookies and grab samples before they are shipped to the stores, though this may not be the most cost
effective sampling method. 
________________________________    

Before going any further, I’d like to briefly comment on sample sizes.  In many statistical books, you
find the erroneous conclusion that n ≥30 (n is the sample size) is some magical number that allows us
to perform (essentially) more simple analysis than if n < 30.  With regards to sample size and accuracy,
it is true that a big sample is better than a small sample, but it isn’t nearly as helpful as one might think.

Generally, to get twice the accuracy one must collect 4 times more data.  Loosely stated, to double the
accuracy of a sample of size 1000, you need a sample of 4000 subjects.  And unless the sample is a
large portion of the population, the population size doesn’t matter at all.  That is, a poll of 1000 people
in Pennsylvania, with about 12.5 million people yields an accuracy that is virtually identical to a poll of
1000 people from Wyoming (population about 500,000) even though Pennsylvania has 25 times as
many people as Wyoming.  Not convinced?  Suppose you make a small pot of chili.  Provided the chili
is well mixed, you can decide if it tastes good from a teaspoonful or two.   Now suppose that you make
enough chili for an entire university in a large vat.  Provided it is well mixed, how much do you have to
taste?  Certainly not a gallon!  (Although I’ve used this excuse before).  A representative sample is
much more important than the sample size (unless your sample is the whole population, of course).
Moreover, there is an entire mathematical theory of optimizing sample sizes.  

Definition:  A parameter is a numerical fact about a population.  



In most situations, the true value of a parameter is not and never will be known.  In theory, we can
discuss the average amount of vitamin B12 in school lunches, but we will never know the true average
unless we study the entire population, which we have already stated would be impractical.  The true
average amount of vitamin B12 in school lunches is a parameter.  Likewise, we can talk about the
inferred population ratio of people experiencing side effects (inferred from the sample we take), but we
will never know the true ratio of people experiencing side effects.  It is a parameter. 

Mathematical notation for parameters generally consist of lower-case Greek letters.  For example, it is
standard practice to use the letter μ (spelled as mu, spoken as “muh-you”) to denote population average
and σ2 (that’s “sigma-squared”) to denote population variance, two parameters that we will  discuss
later-on.  In these notes, μ denotes the parameter population average and σ2 denotes the parameter
population variance. 

Definition:  A  statistic is  numerical fact about a sample.  (For the mathematically inclined, it  is  a
function of all the collected data.)

Although we can not attain the true average amount of vitamin B12 in school lunches, we can estimate
this parameter using the average amount of vitamin B12 in the school lunches that were part of our
sample.  The average amount of vitamin B12 that were part of the sample is a statistic.  Said another
way, the statistic that is the average amount of vitamin B12 in the school lunches that were part of our
sample helps us to estimate the true average amount of vitamin B12 in school lunches nationwide.
Whether or not it will be a good estimate depends on both the statistic and the experiment itself.   

In general,  we use a statistic to estimate a parameter.   Note that I  will use the words statistic  and
estimator interchangeably, usually without mention.

In many cases, the computation of a statistic is done in a similar manner as one would compute a
parameter.  For example, consider the average.  We find averages by adding all the data and dividing by
the size of the data set.  The average of 4, 6, and 11 is 7.  ( .)  Both population averages and sample
averages are computed in this same manner.

Mathematical notation for statistics differs from that for parameters.  The sample average is usually
denoted X.  The sample variance is usually denoted by s2 (or sometimes by S2).  We will follow this
notation in these notes.

________________________________
Example 1.1.2

i)  The sample average, X is an estimator of μ, the population average. 

ii)  The statistic s2, which is the sample variance estimates σ2, the population variance.  

iii) When studying ratios, the sample ratio or proportion is usually denoted as p̂ (we say ‘p hat’).  It is
an estimator of the population proportion p.
________________________________



Definitions 1.1.4   All three examples given above are unbiased estimators for the parameters they are
estimating.  Just like everything in statistics, there is a precise mathematical definition for this, and not
too surprisingly, it requires the tools of calculus.

An estimator is unbiased if the expectation of the estimator is equal to the parameter it is estimating.
This isn’t the best example here, but this might help a bit.  If a dart-thrower is aiming for a bullseye,
and the long term average of the throws is right in the middle, then the dart-thrower is unbiased.  If
most of the time the throws are off in one direction then the darts are biased.

 

`

Biased towards the left and a bit upwards.

Although  the  variability  is  higher,  this  looks
mostly unbiased.



________________________________
Example 1.1.3

Suppose a researcher is interested in the weight of the heaviest human that has ever lived.  This weight
is a parameter.  It is a numerical fact about the entire population of humans throughout history.  There is
an value for this parameter, but nobody knows it, and without a time machine, nobody ever will.  One
way to estimate it is to consider the largest ever measured weight of a human.  This is a statistic, based
on the sample of  all  humans ever  weighed.  It  is  an example of  a  biased estimator,  as  well.   An
estimator is biased if it tends to be either too big or too small relative to the parameter it is estimating.
The odds are that the true weight of the heaviest human ever is larger than the statistic, but it cannot be
smaller (think about this).  So, this particular statistic (which is an estimator) is expected to be smaller
than or equal to the parameter it is estimating, i.e., the expected value of the statistic is less than the
parameter being estimated.  Thus, this is a biased estimator.
________________________________

Definition 1.1.5  A biased sample is a sample obtained via a sampling method that produces values
which  systematically  differ  from  the  values  of  the  population  being  sampled,  i.e.,  it  is  not
representative of the population being studied.

The following  examples  illustrates  some  different  types  of  bias  in  sampling.   Note  that  sampling
humans is generally very difficult. 

________________________________
Example 1.1.4

The Literary Digest was a popular magazine that ran from 1890-1938.  They are well-known for a
massive poll they took for the 1936 presidential election.  The election was between Alfred Landon
(Republican) and the incumbent democrat,  Franklin D. Roosevelt.  The Digest had correctly called the
previous 5 elections.

They sampled simply by mailing surveys –10 million of them.  By contrast, most modern polls use
samples of between a few hundred and a few thousand people.  They gathered names from lists of
automobile owners, subscribers, voter registration records, and social clubs like the Elks, Moose, etc.
They got a remarkable 23% response rate; 2.3 million ballots were returned.  You may also consider
that the total population of the US was around 130 million at the time, and not all of them can vote.

At the same time, George Gallup took a sample of 10,000 people, still a pretty large survey.  Here’s a
table of the actual popular vote for FDR, the Literary Digest (TLD) prediction of the popular vote for
FDR, Gallup’s prediction, and amusingly, Gallup’s prediction of what TLD would predict.    
                              

        FDR Popular vote percentage
                 Actual:    60.8%
           The Literary Digest prediction:    43%
           Gallup’s prediction:    56%
Gallup’s prediction of TLD’s prediction:    44%



This is a spectacular failure of epic proportions!  To contrast this with modern polls:  in 2020 the best
ten polls or so used between 800 and 9000 people in their sample.  All of them predicted Joe Biden
would receive between 54% and 56% of the popular vote.  The actual was 51.3%.  (The error in the
polls was in general due to bias about who would actually cast their vote and other technical matters.)

So, why was Literary Digest so wrong?  They used a biased sampling method.  The technique they
used  is  called  convenience  sampling,  which  is  a  catch-all  term  for  a  sample  with  no  reasonable
probabilistic basis.  It has just about every feature you don’t want in a sample.  A couple of examples:

• It most certainly contained nonresponse bias, where people who don’t respond may be different than
those that do respond.  It’s very likely that the people who returned the survey were systematically
different than those who didn’t.

• It certainly had selection bias, i.e., it was not a representative sample of the population.  That is, the
people who they sampled were different than those they didn’t sample.  In this case, poorer and more
rural people were not sampled nearly as often as those that were affluent.  As is the case now, poorer
and rural people vote differently.

Gallup looked the part of a hero here, although their technique was quite flawed, as well.  The Gallup
poll of 1936 used a method called quota sampling (described below), which is also a biased sampling
method.  It just happens to be less biased than what Literary Digest used.

____________________________
1.2 Sampling techniques/methods

• Census: A census is a sample that consists of the whole population.

Sometimes, this is simply impossible.  For example, the national census, although called that, can never
be a true census because, for example, of the many homeless that are inevitably not-counted.   

Sometimes, taking the whole population doesn’t make sense.  Consider that, to test cement blocks for
strength, you destroy the block.  A census would leave no cement blocks!

Usually, though, a census is just too expensive and/or time consuming.  Suppose that your population
consists of 1 million people, and your study costs 2 dollars per person (a relatively cheap experiment).
So you need at least 2 million dollars to conduct your census.

• Random:  A random sample has the property that every element in the population is equally likely to
be chosen.

Random is good.  We like random.  Random sampling guards against any pattern in the data that is
either known or unknown.  More often than not, the patterns are unknown.  Say you’re a teacher, and
you want to survey your students’ reactions to some method you’ve implemented into your lecture to
try and gauge its effectiveness.  But, you’re in a lecture hall with 300 students.  It  would be very
inefficient to read 300 surveys.  So, you randomly select a student and then have students count off by
ten, taking each 10th student to be in your sample.  This is a random sample.  But this is not a simple
random sample.



• Simple Random (SRS): A simple random sample has the property that every subset of size n of the
population is equally likely to be chosen.  After this chapter, all our samples will be assumed to be SRS
unless otherwise indicated.

This is even better than random.  Using the prior example, once you’ve randomly selected the initial
student, not every subset of size 30 has an equally likely chance of being selected.  So, instead, say that
students draw from a hat, and whoever draws a red ticket takes the survey (there are 30).  This is a
simple random sample.  It is a random sample, also.  Every subject in the population has an equally
likely chance of being in the sample, and every possible sample of size 30 has an equally likely chance
of being selected.   So, simple random samples are random samples,  but  random  samples are not
necessarily simple random samples. 

 
•  Stratified: For this type of sample, the population is divided into groups (strata) and then simple
random samples are taken from within the groups.  

In the hands of a statistician, this sampling technique is more powerful (in that we get better estimates)
than SRS when information is known about the groups.  Consider a study of the average education-
level of residents of Pennsylvania.  If we are stratifying by districts, a stratified sample might take a
simple random sample of 100 people from each school district in each of the ten state regions.  If we
are stratifying by region, a stratified sample might consist of  taking a simple random sample of a few
school districts in each of the ten regions and then taking a simple random sample of the people in each
of the districts.

• Cluster: This sampling method is similar to stratified sampling, but in this approach, the population is
divided into groups and entire groups are chosen via random selection and every member of the chosen
groups is in the sample.

Consider the example given above for stratified sampling.  If instead of taking a sample from each
district, we instead randomly choose say 20 districts and sample everybody in these 20 districts, we
will have a cluster sample.  If we randomly chose 4 regions and took a sample in every district in those
4 regions, we will have a cluster sample.

Notice here how easy it is to combine stratified and cluster sampling.  For example, we could randomly
choose 4 regions (cluster) and then take a simple random sample of school districts in each of the 4
regions (stratified).  In reality, we do what’s called complex sampling, and it often incorporates both
stratified and cluster sampling.

• Convenience: Surveys without statistical methodologies, website polls, newspaper and TV call-ins,
and many more, all fall into this category.  This is a terrible way to sample.  This is a catch-all category
of “bad” techniques. 

If it was an easy sample to get, chances are it is this type of sample.  Convenience sampling is a catch-
all term for any sample that has no statistical methodology.  These are junk.  They typically only
include those members of the population who are available and/or willing to participate in the study.  In
other words, not every eligible member of the population has an equally likely chance of being in the
sample.  They are the epitome of biased, and show up all too frequently.  



•  Quota: This sampling method is like stratified sampling, but convenience sampling, instead of the
SRS method, is used within each group.  This is a terrible way to sample.

The Gallup poll of 1936 from Example 2 used this method.  This is not quite as junky as convenience 
sampling alone, but it’s still junky, which is why Gallup’s numbers for this particular poll were 
considerably different than the true numbers, as well.

• Systematic: This type of sample consists of every k th element of the population. 

This type of sampling isn’t interesting to me; we have good random number generators these days.

• Complex, Multistage and others: These are beyond the scope of this class.  Indeed, there are many
more sampling methods (some quite exotic), but they are all well beyond the scope of this class.

________________________________
Example 1.2.0

Suppose that we have 100 pieces of chocolate candy.  They are separated into 7 piles, made by 7
different people,  that I’ll label with letters.

Pile A has 10 pieces.
Pile B has 10 pieces.
Pile C has 10 pieces.
Pile D has 15 pieces.
Pile E has 15 pieces.
Pile F has 20 pieces.
Pile G has 20 pieces.

If we were to put a unique number on each piece of chocolate, completely disregarding the pile that it
came from, and sample 15 randomly (where each of the 100 pieces equally-likely to be sampled) then
we have taken a simple random sample.

If we were to choose 2 pieces randomly from each pile, and with equal-likelihood within each pile,
then we have taken a stratified sample.

If we were to randomly choose two piles and sample all the chocolate from the two piles then we
would have taken a cluster sample.

Before we sample, though, we must design a study since the design of the study will often dictate the
sampling method.  
____________________________
1.3 Two types of studies

Before we discuss the two types of studies, we first need a couple of definitions.

Definition 1.3.0   In research, the term  variable refers to the measurable characteristics, qualities,
traits, or attributes of a particular individual, object, or situation being studied.



Definition 1.3.1 Confounding variables are any extra variables not controlled for that can affect the
outcome of a study. 

There are observational studies and there are experimental studies.  Experimental studies involve the
deliberate manipulation of variables while observational studies are passive.  Observational studies are
any studies that are not experimental in nature.  These are almost always cheaper and faster, but they
are much more prone  to  confounding variables.   The  following example  illustrates  a  confounding
variable within an observational study. 

________________________________
Example 1.3.0

Every year or so an observational  studies concerning the health benefits  or drawbacks of drinking
coffee is published. For many years it was believed that drinking coffee lead to a lower life span.  A
more carefully planned study noticed that, within the population of coffee drinkers, there is a much
higher smoking rate.  That is, people who drink coffee are far more likely to be smokers.  (They figured
out  why  as  well.   But  it’s  off  topic.)   By  employing  advanced  techniques,  this  can  be  properly
controlled, and consequently, most studies show that moderate consumption of coffee is not a large
risk, and sometimes there are benefits, e.g. it seems to lower the suicide rate.  My personal observation
is that drinking coffee leads to studying mathematics as a profession.  :-)

These studies are observational and not experimental.  People drink the amount of coffee that they
decide, not how much the doctors tell them to drink.  It would be experimental if people were made to
drink a certain amount of coffee.  The observational study above was confounded by smoking.  That is,
“the amount of cigarettes smoked” is a hidden third variable that interfered with the study.
________________________________

Sometimes experimental studies are impossible because there are no variables that can be manipulated,
or the variables that can be manipulated have serious ethical issues attached.  Consider, for example,
studying the cancer rate of smokers.  We simply can not have people begin smoking or smoke more so
that  we  can  test  relative  cancer  rates.   Following  is  an  example  of  a  study  that  is  forced  to  be
observational in nature. 

________________________________
Example 1.3.2

Suppose we are studying whether or not performance on the Brilliance-Standard (BS) exam and shoe
size are related.  This is an observational study since it can not be experimental; we can not manipulate
peoples’ shoe size to see if it affects their BS score and vice versa.  So, a sample of people take a BS
test and their shoe size is measured.  It is found that people with larger feet score much higher on the
test.  The researcher conducting the study concludes that people with larger feet have higher BS scores.
Is their conclusion valid?  Of course not.   There is a confounding variable here.  (No, there is no
Brilliance-Standard exam, and any resemblance to any other exam is purely coincidental.)

The catch here is that children were included in this fictional example.  The hidden bit of information,
the  confounding  variable,  is  age.   Generally  speaking,  people  score better  on  exams as  their  age
increases.



Although this example is kind of silly, it isn’t far off from some real examples.  As was previously
noted,  for  years  it  was  assumed  that  coffee  was  fairly  dangerous  to  your  health  if  consumed  in
relatively large quantities.  Then someone realized that the heaviest smokers drank the most coffee.
Caffeine is metabolized at almost twice the rate in smokers which allows smokers to drink twice as
much coffee as  nonsmokers  without  having adverse side-effects.   So,  until  that  realization,  it  was
thought that the heaviest coffee-drinkers had the most health problems because of coffee.  But, many of
the health issues were due to smoking, which was a confounding variable in the studies.  Most studies
have potential  to be affected by confounding variables, and so good researchers design their study
accordingly.  

Suppose  now  that  we  constructed  the  following  (unethical)  experimental  study  on  the  effects  of
drinking coffee.
  ________________________________
Example 1.3.1

Say we have 300 subjects available for our experiment.  We randomly assign 100 of these subjects to
drink 6 cups of coffee each day, 100 to drink 2 cups of coffee each day, and 100 to abstain from coffee
(oh no!).  If the assignation of our subjects is truly random and the total sample is representative of the
human population, then the confounding variable of smoking is controlled for since the smokers are
randomly distributed in each of the three groups.  The randomness protects the experiment from both
known-confounding variables and unknown confounding variables.
________________________________

When experimental studies are properly designed, confounding variables are controlled for, and the
experiment is called a controlled experiment. 

Moreover, when done properly, experimental studies are much, much more accurate.  They have a very
formal process and planning procedure.  I will not cover this here, except for one very important part.
Before an experiment is performed, each and every decision is already made.  You would:  design the
study, state the research question, the sampling method, decide how to handle missing data, state each
and every statistical method you will use, and so on.  In fact, before a single datum is collected, there
must be a roadmap for anyone to finish the entire project.  A failure to do such is an invitation for data
snooping and data fishing.  Unfortunately this sort of malpractice is widespread and often unnoticed.

Experiments  are  better  and  generally  more  expensive,  but  when  they  involve  humans  they  can
sometimes have their own issues.  There is a very real effect called the Placebo effect.  

Definition 1.3.2  A placebo is a fake treatment, e.g., an inactive substance like sugar, distilled water, or
saline solution that is, ideally, completely indistinguishable from the actual active treatment.

Definition 1.3.3 The  Placebo effect is a phenomenon in which a placebo can sometimes improve a
patient's condition simply because the person has the expectation that it will be helpful.

This is a real effect; we’ve measured it  time and time again.  If people know they are in a study,
something psychological, but very real happens: their belief(s) can (and do) actually alter the outcome
of the experiment.  For example, people given pills with nothing but inert chemicals claim pain-relief.



A randomized controlled double-blind experiment controls for the Placebo effect.  Controlled means
some subjects receive no treatment, i.e., a group of subjects gets the placebo while the rest get the real
medication.  These are called the control and treatment groups, respectively.  Randomized means that
the control and treatment groups are chosen at random (as opposed to selected on some characteristic,
even subconsciously), and double-blind means that neither the evaluator nor the subject knows who is
in the control group or the treatment group.

For example, to decide if vitamin X really is good at preventing heart attacks, the following (unethical)
example could be employed.  
________________________________
Example 1.3.3

A statistician picks two simple random samples from the population.  (Ideally people from around the
world.  If it were people only from the United States it could very well be biased.)  An “advanced
vitamin X substitute”  that  is  completely indistinguishable  from the regular  vitamin X is  given by
medical doctors to one of the samples, while vitamin X is administered by doctors to the other sample.
The statistician makes sure the medical doctors don’t know whether they are giving the substitute or the
real vitamin X.  The doctors then evaluate the people and report their findings to the statistician.  The
statistician then performs the exact statistical procedures that were decided upon before the experiment
even began.
________________________________

Why all the fuss?  Humans have problems with bias, and we’ve taken all human-induced bias away in
this example.  The patients and doctors don’t know if they are in the control group or the experimental
group.  Historically, either group knowing has been a huge problem.  This is the “double-blind” part.  It
is  a  “controlled  experiment”  because  we  have  people  either  getting  a  treatment  or  not  getting  a
treatment, and they are randomized as well.  (Letting people volunteer has historically sorted them into
two different types of groups.)  The last part about the statistician performing procedures decided upon
before the experiment is equally important.  In statistics, there is usually a large number of procedures
that could be used in a given situation.  If you allow the statistician to pick how they will analyze the
data after  the data is  obtained, they could try them all  and pick the one that works best  for their
particular purpose.  This is another type of bias called data snooping.  Picking your statistical methods
after collecting the data completely invalidates your experiment.

So,  although experimental  studies  are  better  than observational  studies,  keep  in  mind  that  a  good
experiment is hard to run and requires significant planning.  (There is a rich field of mathematics called
design of experiment.)


