
Chapter 2 Notes and elaboraƟons for STAT 141-IntroducƟon to StaƟsƟcs

Assignment

The material in Chapter 2 is considered high-school review, although you certainly should read it and
make sure you are  comfortable with  all  of the terms.  I  am not terribly concerned with “ogives”,
“Pareto Charts”, or the fussiness about class boundaries and widths.  You should know how to read a
histogram or other types of graphical data.  I tend to use the word “right-tailed” instead of “right-
skewed” and similarly for the leŌ side.

I  believe  that  most  people  now construct  most  graphs  of  data  on a  computer,  so  I  tend  to  de-
emphasize  their  construcƟon.   However,  being  able  to  construct  a  histogram  means  that  you’ll
definitely be able to read one so you may wish to try a couple extra odd-numbered problems.

I suspect that most of you know most of the material from this chapter already.

Do the following exercises:

2.2 (page 65):  1, 3 is a good idea, 5, and 20 (Answers to #20 are 0, 14, 10, 16).

2.3 (page 90): 5, 17.



Chapter 3 Notes and elaboraƟons for Math 1125-Introductory StaƟsƟcs

Assignment

The material in Chapter 3 is of foundaƟonal value for this class.  Read this chapter well.  You will not
be tested on and do not have to read:

•  The mean for grouped data.
•  Variance and standard deviaƟon for grouped data.
•  The coefficient of variaƟon.
•  The range rule of thumb.
•  The midrange.  
•  You should understand what a percenƟle is, but not worry about compuƟng them in general.
•  You will have to be able to compute quarƟles, which are specific percenƟles.

Do the following exercises:

3.1 (page122):  3, 5, 7 (skip the midrange for those), 25, 27, 28 (answer is 82.67), 29.

3.2 (page143): 1, 3, 4, 7, 9, 11.  Be sure to be able to compute the SD and variance by hand, but don’t
perform calculaƟons without a calculator/computer.

3.2 (page145):  29, 31, 35, 41

3.3 (page159): 1- 7 all.  9 – 15 odd.

3.4 (page172): 1-13 odd

Notes follow on the next page.



This chapter aƩempts to answer some fundamental quesƟons such as:  Where’s the “middle” of a
data set?    How spread out is the data?  How does a parƟcular data point compare with the rest of the
data set?  Before we get to these, though, I will review a couple of the basics. 
______________________________
3.0 Recall of definiƟons we will need

Recall the following definiƟons from the Chapter 1 notes:

DefiniƟon 1.1.2   A parameter is a numerical fact about a populaƟon or distribuƟon.  

In most situaƟons, the value of the parameter is not and never will be known.  In theory, we can
discuss the average age of all people in Europe, but we will never know the true average.  This is a
parameter. 

DefiniƟon 1.1.3   A staƟsƟc is numerical fact about a sample.  

We can, however, take a sample of people in Europe and compute the average.  This is a staƟsƟc.  In
general, staƟsƟcs are used as esƟmators of parameters, e.g., we can use the average age of the people
in the sample to esƟmate the average age of all people in Europe.  Usually the computaƟon of a
staƟsƟc is done in a similar manner as one would compute a parameter.  For example, consider the
average.  We find averages by adding all the data and dividing by the size of the data set.  The average
of 4, 6, and 11 is 7.  Both populaƟon averages and sample averages are computed in this manner.

________________________________
Example 3.0.0

Suppose a researcher is interested in the strongest wind speed in a hurricane ever.  This would be a
parameter.   It  is  a  numerical  fact  about  the  enƟre  populaƟon  of  hurricanes  that  have  occurred
throughout history.  There is an answer, but nobody knows it, and without a Ɵme machine, nobody
ever will.  One way to esƟmate it is to consider the strongest wind speed ever measured during a
hurricane.  This is a staƟsƟc, based on the sample of all wind speeds ever measured during hurricanes.
It is an example of a biased esƟmator, as well.  An esƟmator is biased if it tends to be either too big or
too small relaƟve to the parameter it is esƟmaƟng.  The strongest wind speed ever during a hurricane
cannot be smaller than this (think about this).  So, this parƟcular staƟsƟc (which is an esƟmator) is
expected to be smaller than the parameter it is esƟmaƟng.  Thus, this is a biased esƟmator.
________________________________

Note again that I use the words staƟsƟc and esƟmator interchangeably in the above example. 

Throughout the rest of this chapter, we will focus on commonly used descripƟve staƟsƟcs.  DescripƟve
staƟsƟcs tell us about important features of a data set.  DescripƟve staƟsƟcs give us tools to answer
such fundamental quesƟons as:

Where’s the middle of a data set?   
How spread out is the data?  



How does a parƟcular data point (or a randomly chosen data point) compare to the rest of the data
set?  
Is the distribuƟon symmetric?  (The same on both sides of the middle.)
Is the distribuƟon peaked or flat near the middle relaƟve to the normal curve? 

To answer these quesƟons, we will look at the following:

measures of central tendency: mean, median, mode
measures of variaƟon or dispersion: variance, standard deviaƟon, range, IQR
measures of locaƟon: order staƟsƟcs, percenƟles, and z-scores
the empirical rule and Chebyshev’s Theorem

_____________________________
3.1 Measures of central tendency

Measures of central tendency give us informaƟon on the middle of a data set.  We discuss here three
commonly used measures of central tendency: mean, median, and mode.

DefiniƟon 3.1.0  The mean of a data set is simply the average of the data.

Here is a list of properƟes of the mean. 

•  We use the symbol X (read this aloud as “X-bar”) to represent the staƟsƟc, and μ for the parameter.
That is,  X is the sample mean and μ is the populaƟon mean.

•  The book uses lazy summaƟon notaƟon, and it bothers me.  I’ll briefly explain it here.  

If we have a list of say 10 data points, we could call the first one x1, the second one x2, the third one x3,
and so on.  The Greek leƩer sigma, Σ, means “sum”.  Properly, one writes:

∑
i=1

10

xi=x1+x2+⋯+x9+x10

The i=1 means start adding with the first data point, and the 10 on top means stop at the 10 th one.  If 
we had N data points instead of 10 we would write:

∑
i=1

N

xi=x1+x2+⋯+x N−1+xN

Using this notaƟon, the proper way to write the mean (take N numbers each called x with a subscript, 
add them up and then divide by the total number) is:



1
N∑i=1

N

xi=
x1+x2+⋯+x N−1+xN

N

The book just uses  ΣX to denote “add all the x’s.” 

• The mean uses all the data to calculate the center.  This means it has the potenƟal to be much more
opƟmal than other methods that do not.

• The mean tends to vary less than the median from the same populaƟon.  The book is wrong here for
many important types of data sets.

• The mean is unique (every data set has at most one mean) and may not be a value in the data set.
Consider that if you have 3 children and your neighbor has 2 children, together you have an average of
2.5 children.  

• The sample mean is an unbiased esƟmator of the populaƟon mean μ, provided the populaƟon mean
exists.

• The mean can be adversely affected by outliers.

•  There  are  distribuƟons  which  have  no  mean.   I  mean  the  mean  does  not  exist  for  certain
distribuƟons, but you probably don’t know what I mean!  (Sorry.)  You can always take the mean for a
list of numbers from a populaƟon, but if the populaƟon doesn’t have a theoreƟcal mean (expected
value), then this number will tell you nothing about the middle of the data set.

________________________________
Example 3.1.0

A student is geƫng ready to graduate high school and move on to college.  This student is researching
universiƟes and one piece of informaƟon the student is collecƟng in their study is the average income
of graduates.  The student is extremely interested in the University of North Carolina at Chapel Hill,
because the average income of their graduates is six figures!  What this student doesn’t know is that
Michael Jordan is a graduate of this university, and his (ridiculous) income is used as one of the sample
points when compuƟng the average income of graduates.  Michael Jordan’s income is an outlier.  Most
people do not make millions of dollars.
________________________________



So, even though the mean is a good esƟmator of the central tendency most of the Ɵme, there are
situaƟons where the mean does not truly capture the central tendency of the data.  This is because
the mean is not robust.

DefiniƟon 3.1.2 A robust esƟmator is not sensiƟve to outliers.

The median, however, is a robust esƟmator of the central tendency.  In Example 3.1.0, the median
income of graduates is essenƟally unaffected by Michael Jordan’s income.

DefiniƟon 3.1.3  The median is the middle value of a sorted data set.

________________________________
Example 3.1.1

If there are an odd number of data points in our sample, this is simply the middle value of the sorted
data.  For example, the median value of {2.3, 4.6, 1.7, 3.2, 1.7} is 2.3.  Here’s how we find it.

Step 1: Order the data from least to greatest: 1.7, 1.7, 2.3, 3.2, 4.6
Step 2: Find the middle data point.  For this data set, it is 2.3.  

If there are an even number of data points in our sample, this is the mean of the two middle values of
the sorted data.  For example, the median value of {2.3, 4.6, 1.7, 3.2, 1.7, 2.9} is 2.6.

Step 1: Order the data from least to greatest: 1.7, 1.7, 2.3, 2.9, 3.2, 4.6
Step 2: Find the two middle data points.  For this data set, they are 2.3 and 2.9.
Step 3: Average the two middle data points.  We get 2.6.   
________________________________

The median is a preƩy good measure of central tendency, though it does not use all the data.  That is,
we lose informaƟon when we use the median alone to esƟmate the populaƟon mean μ (which is the
true center). And unlike the staƟsƟc X, the median is not always an unbiased esƟmator of μ.  We won’t
do much with the median at this level other than to discuss skewness and calculate quarƟles, but
know that it is sƟll quite useful.



It is also useful to look at the mean and median together.  We do this a lot.  Consider the following
graph of average vs. median wages for US workers from 1988 to 2010 (taken from Office of Chief
Actuary, US SSA).  A drop in the raƟo between them is one way of measuring increasing economic
inequality.  From the graph, we can see that this raƟo has actually dropped about 5% over the these
22 years.  This means median wages have lowered significantly relaƟve to mean wages, which tells us
the distribuƟon of wealth is geƫng more skewed to the right.  EssenƟally, a few people have quite a
bit more money.



Yet another measure of central tendency is the mode.

DefiniƟon 3.1.3. The mode of a data set is the value occurring most oŌen in the data set.  OŌenƟmes
it is used with histograms to discuss the locaƟon of peaks in a data set, although only one of them is
truly the mode.

Why does the mode measure central tendency?  It is
not as simple as follows,  but  you can think of  it  like
this:  if  most  of  the  values  in  your  data  set  are  the
number 3.2,  then we would expect the mean of  the
data set to be close to 3.2 (unless we have an outlier!).
Like the median, the mode is not always an unbiased
esƟmator  of  μ.  In  fact,  the  mode  is  generally  most
useful  when  analyzing  qualitaƟve  data,  and  preƩy
useless otherwise.  NoƟce from the histogram on the
right that data sets can have more than one mode.    

Just a couple more things I’d like to menƟon relaƟve to measures of central tendency:

Histogram with skew: See the pictures in the book for this; they do a preƩy good job with it.  Note that
skewness is a measure of symmetry, not central tendency, but we can glean informaƟon regarding the
mean and the median by looking at the skewness.  If you have quesƟons on this, post them or email
me. 



Weighted mean:  Be sure to understand the book’s worked-out examples.  Here’s  a bit  more that
might help.

When data points do not contribute to the mean equally, we must use a weighted mean.  Formally, if
the data set consists of x1, x2, x3, . . . ,xn and the corresponding weights are w1, w2, w3, . . . ,wn  then:

 The weighted mean = 
∑
i=1

n

wi xi

∑
i=1

n

wi

________________________________
Example 3.1.2

Say you are taking a 4-credit course, three 3-credit courses, and one 2-credit course.  Suppose also
that an A is four quality points, a B is 3 quality points, and a C is 2 quality points.  You get a B in the 4-
credit course, two C’s and an A in the 3-credit courses, and a B in the 2-credit course.  So, in general,
your GPA is calculated as follows:

4∗3+3∗2+3∗2+3∗4+2∗3
4+3+3+3+2 =2.8

 
_______________________________

Not geƫng the weighted mean?

Here’s a liƩle extra.  I’m going to make some non-standard definiƟons along the way to try and sort
this out.  Let’s say there are 3 ways to take a mean: unweighted, simple weighted, and non-simply
weighted.

Let’s start with an unweighted mean and look at it in a different way.  This is what people intend when
they say “take the mean.”
________________________________
Example 3.1.3

Suppose you have 2 exams: x1 is the score on test 1, and x2 is the score on test  2.  The mean is
computed as (x1 +  x2)/2.  I will turn this into what I’ll call a simple weighted mean.  Here’s what I’m
calling the unweighted mean:

x1+x2

2
=
x1

2
+
x2

2
=50 % (x1)+50 % (x2)



So your grade is 50% composed of test 1, and 50% composed of test 2.  PreƩy easy, right?  NoƟce that
50% + 50% = 100%.  These percentages are called the weights.  There is a cool geometric picture that
goes with this as well, but lets forge-on algebraically.

Consider the same scenario, but make it four tests.  One adds the four scores, then divides by 4.  Lets
see the weights:

x1+x2+x3+x4

4
=
x1

4
+
x2

4
+
x3

4
+
x4

4
=25% (x1)+25% (x2)+25% (x3)+25 % (x4)

All of the weights turn out to be 25%.  The unweighted mean could (or should?) be called the equal-
weights  mean.   Each  data  point  has  an  equal  weight.   If  there  were  10  tests,  each  data  point
contributes 10% to the mean.

Now lets change to the  simple weighted mean.   Here’s how it  will  work: you are given 100% to
distribute to the data points as you see fit.  Let’s suppose a class has 4 components:  parƟcipaƟon (p)
is 10%, quizzes(q) are 30%, the midterm(m) is 20%, and the final(f) is 40%.  The weighted mean is
given by the formula:

OverallGrade  =  0.1*p + 0.30*q + 0.20*m+ 0.40*f

Instead of giving everything equal weights, we now have put more emphasis on different components.
________________________________

The  non-simply weighted mean, what the rest of the world calls the weighted mean, is when we
allow the weights to not sum up to 100%.  Here’s the funny part: we fix it so that the weights sum up
to precisely 100% in the process of compuƟng the weighted mean.  That is, every weighted mean is
transformed into a simply weighted mean while you do the computaƟon.  I’ll give you two examples.

________________________________
Example 3.1.4

Let’s say a teacher’s syllabus reads like this: the midterm is worth 2 tests, there are two “normal”
tests, and a final worth 3 tests.  Many people (but not me) will compute the grade as below, with the
idea that really there are 7 tests:  two midterms(copy the score twice),  two tests,  and three final
exams.

OverallGrade  =  (m + m + t1 + t2 + f + f + f ) / 7

Well let’s see here:
  



2m+t1+t2+3 f
7

=2 m
7
+
t1

7
+
t2

7
+3 f

7
≈0.2857m+0.1429∗t1+0.1429∗t2+0.4286∗f

If  they  understood  a  weighted  mean,  they  could  just  say  the  midterm is  worth  (approximately)
28.57%, each test is worth 14.29%, and the final is worth 42.86%.  Once you understand, then you
realize that this is completely possible as well:

________________________________
Example 3.1.5

The midterm is worth 1.2 tests, there are two “normal” tests, and a final worth 19.3 tests.  Do that out
(really, you do it!), and you see the weights are:  

1.2m+t1+t2+19.3 f
1.2+1+1+19.3

=
1.2m
22.5

+
t1

22.5
+

t2

22.5
+

19.3 f
22.5

≈0.0533m+0.0444∗t1+0.0444∗t2+0.8578∗f

The formula on the far leŌ (above) is exactly the formula for weighted means.  The divisor is the
number of tests: 1.25+1+1+19.3 = 22.5 tests.  NoƟce at the far right there are four weights, each one
giving you the fracƟon of the final score that each data point is weighted by.  They should sum to
100%, and they would except for the rounding error.
________________________________

So let’s review the point of the last two examples.  What the world calls weighted means is a broad
class of types of means that can be categorized.  Unweighted means happen when each of the data
points contribute equal raƟonal weights and the sum of the weights is 1.  Simple weighted means
happen when the data points contribute unequal weights and the sum of the weights is 1.  And non-
simply weighted means happen when the data points contribute unequal weights and the sum of the
weights is not necessarily. 

For anyone looking to conƟnue on in mathemaƟcs, this idea of weighƟng different points occurs oŌen.
The  expected value  of  a  discrete  random  variable  (which  we  discuss  in  the  next  secƟon)  is  the
weighted  mean  of  all  possible  outcomes  where  the  weights  are  probabiliƟes  per  outcome.
(SomeƟmes this is an infinite sum.)  This is exactly the dot product of a vector of weights with the
vector of outcomes.  In fact, it is the projecƟon of a vector onto another vector using the taxicab
metric. . .I should stop now.  There are conƟnuous analogs as well . . I will stop.  Anyway, this concept
is very useful.



3.2 Measures of variaƟon/dispersion

Measures of variaƟon (or dispersion) tell us how ‘spread out’ the data is.  Measures of dispersion are
essenƟal to the field of staƟsƟcs.  In this secƟon we focus on the commonly used range, interquarƟle
range (IQR), variance and standard deviaƟon.   

DefiniƟon 3.2.0 The range of a data set is the distance between the largest value in the data set and
the smallest value in the data set.  (StaƟsƟcally, it is not two numbers separated by a dash!)

________________________________
Example 3.2.0

Consider the following data sets:

A = {3, -4, 6, 8, -10}, B = {5, 7.2, 0, 9}, and C = {0, -13, -4.2, -9, -13.1}.

Range(A) = 8 -(-10) = 18, Range(B) =9-0 = 9, and Range(C) = 0-(-13.1) = 13.1. 
________________________________

The range is not terribly useful for the types of data we’ll deal with in this class, but it is one measure
of spread.  Where it becomes useful is well beyond the scope of this course.

Another handy measure of dispersion is the IQR.

DefiniƟon 3.2.1 The InterquarƟle range (IQR) is the third quarƟle minus the first quarƟle, i.e., IQR =
Q3 - Q1.

So, in  order to understand the IQR, we must  first  understand the concept of  quarƟles.   The first
quarƟle of a data set is the data point Q1 such that one-quarter (25%) of the data points are smaller
than Q1.  It is the median of the first half of the ordered data set.  The second quarƟle, Q2, is the
median.  Recall that 50% of the data is smaller than the median.  The third quarƟle, Q3, is the median
of the second half of the ordered data and has the property that three-quarters (75%) of the data
points are smaller.    

________________________________
Example 3.2.1

Consider the following data set, already sorted for us:

{9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24}.

There are an odd number of data points in this set, so the median is the middle number.  This is our
second quarƟle:

median = Q2 = 18.



Now to get the first quarƟle, we remove the median and find the median of the lower half of the data.
The lower half of the data is
9, 12, 13, 14, 16, 17.

So, we get Q1 = (13+14)/2 = 13.5.  We do the same thing with the upper half of the data to get Q3 = 21.
Thus, the interquarƟle range of this data set is 

IQR = 21 - 13.5 = 7.5.
This is a measure of variaƟon.
________________________________



Boxplots
The  largest  value  (maximum),  the  smallest  value  (minimum),  and  the  three  quarƟles,  all  taken
together, make up what is known as a 5 number summary.  Five number summaries are a great way to
get a quick feel for a dataset, and even beƩer for comparing datasets.  Five number summaries are
used to construct box-plots or “box and whiskers” plot.  Your book does a preƩy good job with these,
but here’s an extra example to help.  I like five number summaries.
________________________________
Example 3.2.2

Let’s construct a box-plot for the data set given in Example 3.2.3.  Here’s the data again:

{9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24}.

Our five number summary is: min = 9,  Q1 =13.5,   Q2 =18,  Q3 =21,  max = 24.

Step 1: Draw a number line over an interesƟng range includes your min and max.  (If this was data you
cared about, you’d know what interesƟng means here.)

Step 2: Plot your five number from the summary on your number line.  Draw a line connecƟng the two
on each edge.  I usually do this floaƟng above the number line.  Like this.

  

Step 3: Draw a box with edges at the first and third quarƟles and a verƟcal line through the median.

That’s it.  That’s a boxplot.  Note that the middle 50% of the data is in the box.  The smallest 25% of
the data is in the “leŌ whisker” and the last 25% is in the “right whisker”.  The median is the verƟcal
bar in the box.  SomeƟmes people put the mean in by using a dashed verƟcal line.



    
________________________________
DefiniƟon 3.2.2 The variance (Var) is a measure of how spread out the data points are relaƟve to each
other.  The variance is about equal to the mean of the squared deviaƟons.  What that means will be
explained later.

DefiniƟon 3.2.3  The Standard DeviaƟon (SD) is the square root of the variance.

These are the two most widely used measures of dispersion.  Following is a list of properƟes of these
two measures of dispersion:

• We generally use the symbol s and s2 to represent the staƟsƟc, and σ and σ2 for the parameter, i.e., s
and s2 are the sample standard deviaƟon and sample variance, respecƟvely, and σ and σ2 are the
populaƟon standard deviaƟon and populaƟon variance, respecƟvely.  The laƩer symbols are lower-
case sigmas from the Greek alphabet.  We read them “sigma” and “sigma-squared”.  I will also use Var
and SD.

• The variance is, for many deep mathemaƟcal reasons (most of which are well beyond the scope of
this course), one of the best ways of measuring variability in data.

• Bigger values indicate more variaƟon, that is, greater dispersion of the data.

• The SD is always the square root of Var.  For example, if Var = 1.21, then the SD = 0.11 and if the SD =
2.5, then Var = 6.25. 

• The smallest value possible for the Var and for SD is 0.  The only way to get a 0 for a variance is by
having no variability at all.  The following is an example of a data set with a Var = 0:  {14, 14, 14, 14,
14}.

• To calculate Var appears inƟmidaƟng, but if you take it step-by-step, it’s not so bad.  Just take a data
point, subtract the mean, and square it.  Do this with every data point.  When you’re done, sum up all
the squares that you have (this is actually called the sum of the squared deviaƟons), and then divide
by N, the number of elements in the populaƟon.  If you have a sample, divide by n -1, instead (recall
that n is your sample size, i.e., the number of elements in your sample)*. This is called the sample
variance.  Here’s the formula for the two variances:

σ2
=

1
N∑i=1

N

(X i−X )2 s2
=

1
n−1∑i=1

n

(X i−X )2

*It may seem weird to divide by n-1 instead of n, but we do this so that our sample variance is an
unbiased esƟmator of σ2.

• To calculate Var and SD by hand, it is useful to make a table.  Nowadays, most people just use a
computer.



Example 3.2.3

Say we ran an experiment and have the following data set.  You are taking an exam and must find the
standard deviaƟon.  Data set: {9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24, 27}  

Step 1:  Find the mean.

Add all the data points and divide by 14 (our sample size).
We get that = 18.

Step 2: Make a table.    First, subtract the mean from each data point.

X X- 18
9 -9

12 -6
13 -5
14 -4
16 -2
17 -1
18 0
18 0
19 1
20 2
22 4
23 5
24 6
27 9

Step 3: Now square the last column.

X X- 18 (X- 18)2

9 -9 81
12 -6 36
13 -5 25
14 -4 16
16 -2 4
17 -1 1
18 0 0
18 0 0
19 1 1
20 2 4
22 4 16
23 5 25
24 6 36
27 9 81



Step 5:  Sum all the squares.  In this case, if you add them all you get 326.

Step 6:  If you are compuƟng the sample variance, divide by one smaller than the sample size. In this
case, that’s 13.  If you are compuƟng the populaƟon variance, divide by the populaƟon size.  In this
example, that would be 14.

So the sample variance is: 326/13 ≈ 25.08 (squiggly equal means approximately equal to).

And so the standard deviaƟon (take the square root) is about 5.008.
________________________________

We don’t always have to actually calculate the variance in order to compare the spread of different
data sets.  We can see the spread with visual aids such as many of the charts/graphs in Chapter 2 of
your text.  And if the data sets are simple enough, we can just ‘eyeball’ the data as follows.

________________________________
Example 3.2.4

Rank these three data sets in order of increasing variance without calculaƟng anything except the
mean:

   A = {1,2,3,4,5}, B ={-1,1,3,5,7}, and C ={1,3,3,3,5}.

First, note that the mean of each set is 3.  So now observe each set carefully and find which set
contains points that are the least distance from the mean and the furthest from the mean. 

It seems a liƩle more obvious once you subtract the mean from each:

A-3 = {-2, -1, 0, 1, 2} B-3={-4, -2, 0, 2, 4} C-3 = {-2, 0, 0 ,0 2}

Here they are smallest to largest variance: {1,3,3,3,5}, {1,2,3,4,5}, and then {-1,1,3,5,7}, i.e., C has the
smallest variance and B has the largest variance.  You could check this by finding the variance of these
sets.  I get 

Var(A)  ≈  1.58, Var(B)  ≈  3.16, and Var(C)  ≈ 1.41. 

You could have also constructed box-plots for each of the data sets and compared them visually. 



3.3 Measures of posiƟon/locaƟon

By the term measure of posiƟon, we mean where is a data point located with respect to the rest of
the data.  In this secƟon, we aƩempt to answer such quesƟons as: is a data value less than the value
of the mean, i.e., does it lie to the leŌ of the mean?  Is it to the right of the mean?  How many
standard deviaƟons from the mean is the data point?
We begin with  a  thorough discussion  of  the  all-important  concept of  standardized scores,  i.e.,  z-
scores.

DefiniƟon 3.3.0: A z-score (or standard score) corresponding to a data point is the number of standard
deviaƟons the data point  falls above or below the mean.  If the data point is equal to the mean, then
its corresponding z-score is 0.  If a data point is smaller than the mean, its corresponding z-score is
negaƟve, and if a data point is greater than the mean, its corresponding z-score is posiƟve.

Be sure you know how to compute these, i.e., take a data point, subtract the mean of the data set,
and divide by the standard deviaƟon of the data set.  Recall that the SD is the square root of the
variance and both are measures of variaƟon.   Let’s go over the computaƟon of it all first, and then try
to get an intuiƟve feel for what’s going on here.  

If the data point is  x, the mean of the data set is  X, and the standard deviaƟon of the data set is  s,

then: the z-score (denoted as z) is computed as: z= x−X
s

 

If you have a z-score and need the original data point you reverse this algebraically to get:

x=z∗s+X
_______________________________
Example 3.3.0

You are presented with a data set that has a mean of 9 and a variance of 16.  

(a) Suppose 6 is a data point.  Find its corresponding z-score.

Take the data point, 6, subtract the mean, and then divide by 4 (4 is the square root of 16) to get a z-
score of -0.75.

(b)  Suppose 15 is a data point.  Find its corresponding z-score.  You should get 1.5.

(c)  Suppose you are told that a data point has a corresponding z-score of 1.8.  Find the data point.

Take 1.8, mulƟply by s (which is 4) and then add 9.  We get that x = 16.2.
________________________________

Don’t miss the very important fact that the z-score of a data point is simply the number of standard
deviaƟons above or below the mean (reread the definiƟon above).  Let us try to expound on exactly



what this means, and we’ll also try to provide pictures to complement the text.  AŌer we’ve got a
feeling for what a z-score is, then we’ll relate it to the normal curve, which we’ll explore in Chapter 6.



Example 3.3.1

Recall the data set from Example 9: {9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24, 27}.
 We have that X = 18 and the SD ≈ 5.008. 

(a)  Find the new data set created by converƟng each point to its z-score.  Here is a table to help us
keep the informaƟon organized. 

X X- 18 (X- 18)/ 5.008
9 -9 -1.797

12 -6 -1.198
13 -5 -0.998
14 -4 -0.799
16 -2 -0.399
17 -1 -0.200
18 0 0.000
18 0 0.000
19 1 0.200
20 2 0.399
22 4 0.799
23 5 0.998
24 6 1.198
27 9 1.797

And so we see that the transformed data set is:
 
{-1.797,-1.198,  -0.998, -0.799, -0.399, -0.200, 0, 0, 0.200, 0.399, 0.799, 0.998, 1.198, 1.797}.

This new data set has mean of 0 and SD of 1.  (Calculate them if you want.)

(b) You are told that a data point has a corresponding z-score of 0.2.  What is the value of the data
point?

Well, you can just look at the table and see that it is 19 (rounded).  But, you can also use algebra as
follows:

0.2*s + X = 0.2*5.008 + 18 = 19.016



Say we start with a random sample of size 500 from a bell-shaped with mean of 50 and SD of 10.  Here
is a picture of this data set.

Here we convert all the data to z-scores.  This data set is distributed with the same shape but with
mean of 0 and SD of 1.  Below is a picture of this new data set.



Compare these two pictures.  All we did was slide the histogram to the leŌ, and then mulƟply by an
appropriate scalar (a scalar is just a number that we can mulƟply by to shrink things or to blow things
up) in order to have a variance of 1.  The essence of the data remains--the distribuƟon itself remains
unchanged except for the locaƟon and scale.



The important part of z-score transformaƟons is that the posiƟons of all the data points relaƟve to one
another do not change, i.e., it is as if we pick up the picture, shrink/expand it depending on the SD,
and place it with its center on zero.  For example, if a data point was 2.33 SD’s below the mean before
the  z-score  transformaƟon,  then  it  is  sƟll  exactly  2.33  SD’s  away  from  zero  aŌer  the  z-score
transformaƟon.  In fact, its z-score is 2.33.  Let us reiterate, the z-score of a data point is simply the
number of standard deviaƟons above or below the mean. 

Hopefully, by now you are wondering why we do this.  I’m glad you asked.  It’s easier to compute and
compare data with z-scores.  Indeed, if we want to compare two points from two different data sets, it
makes good sense that we must first get them to the same scale of measurement, doesn’t it?  These
gadgets will be very important to us, so learn them well. 



3.4 The Empirical Rule and Chebyshev’s Theorem

The Empirical Rule states that, for a sample from a normally distributed populaƟon (again, we will
explore this concept in Chapter 6 - for now, think bell-shaped), the following properƟes hold:

• approximately 68% of the data lies within 1 SD from the mean.
• approximately 95% of the data lies within 2 SD’s from the mean.
• approximately 99.7% of the data lies within 3 SD’s from the mean.

For applicaƟon purposes with respect  to z-scores, this  means that aŌer we transform to z-scores,
about 68% of the z-scores will fall in the interval (-1, 1), about 95% of the z-scores will fall in the
interval (-2, 2), and about 99.7% of the z-scores will fall in the interval (-3, 3).

     



Example 3.4.0

Consider a random sample of 400 from a populaƟon with a mean of 100 and SD of 15.

(a) According to the empirical rule, about 34% of the sample values fall in the interval (100, x).  Find x.

We can reason our way through this.  Since (100, x) captures 34% of the data points and 100 is the
mean, x must be 1 SD above 100 (by the empirical rule).  Since the SD is 15, we add 15 to 100 to get 1
SD above 100.  And so, x = 115.

(b) What percentage of the data points have values less than 70?

70 is 30 below the mean of 100.  That is two SDs.  So 70 is 2 SD’s below the mean.  Recall that the
empirical rule states about 95% of the data is within 2 SD’s of the mean.  This means that there is
about 5% of the data outside of 2 SDs of the mean (in the tails).  Half of that is in the right tail (below 2
SDs) and the other half is in the upper tail.  That number is 2.5%.

(c) How many data points in the sample have values above 130?

130 is two SDs above 100.  From what we did in (b) we see that 2.5% of the data points have values
greater than 130, as this is the right-tail.  So, we find 2.5% of 400 (our sample size).  MulƟply 400 by
0.025 to get 10.  This means that about 10 data points are greater than 130.  
________________________________

All that was fun, but what if the data values we’re most interested in are not nice mulƟples of the SD?
Well, luckily enough for us, people have already computed all the values we could ever be interested
in and put them into a relaƟvely easy to read table called the z-Table.  So, we convert to z-scores and
use this table; we will begin doing this in Chapter 6.  

Chebyshev’s Theorem deserves menƟon because it is actually quite remarkable.  It can be thought of
as an empirical-like rule that holds for any distribuƟon.  Chebyshev proved that, given any distribuƟon,
at least 75% of the data values will be within 2 SDs of the mean, at least 89% of the data values will be
within 3 SD’s of the mean, and at least 94% of the data values will be within 4 SD’s of the mean.

This table gives you a guaranteed percentage of the data within a given number of standard deviaƟons
according to Chebyshev’s rule.

Std Dev Percentage
1.5 55.56%

2 75%
2.5 84%

3 88.89%
3.5 91.84%

4 93.75%


