
Chapter 2 Notes and elabora ons for STAT 141-Introduc on to Sta s cs

Assignment

The material in Chapter 2 is considered high-school review, although you certainly should read it and
make sure you are  comfortable with  all  of the terms.  I  am not terribly concerned with “ogives”,
“Pareto Charts”, or the fussiness about class boundaries and widths.  You should know how to read a
histogram or other types of graphical data.  I tend to use the word “right-tailed” instead of “right-
skewed” and similarly for the le  side.

I  believe  that  most  people  now construct  most  graphs  of  data  on a  computer,  so  I  tend  to  de-
emphasize  their  construc on.   However,  being  able  to  construct  a  histogram  means  that  you’ll
definitely be able to read one so you may wish to try a couple extra odd-numbered problems.

I suspect that most of you know most of the material from this chapter already.

Do the following exercises:

2.2 (page 65):  1, 3 is a good idea, 5, and 20 (Answers to #20 are 0, 14, 10, 16).

2.3 (page 90): 5, 17.



Chapter 3 Notes and elabora ons for Math 1125-Introductory Sta s cs

Assignment

The material in Chapter 3 is of founda onal value for this class.  Read this chapter well.  You will not
be tested on and do not have to read:

•  The mean for grouped data.
•  Variance and standard devia on for grouped data.
•  The coefficient of varia on.
•  The range rule of thumb.
•  The midrange.  
•  You should understand what a percen le is, but not worry about compu ng them in general.
•  You will have to be able to compute quar les, which are specific percen les.

Do the following exercises:

3.1 (page122):  3, 5, 7 (skip the midrange for those), 25, 27, 28 (answer is 82.67), 29.

3.2 (page143): 1, 3, 4, 7, 9, 11.  Be sure to be able to compute the SD and variance by hand, but don’t
perform calcula ons without a calculator/computer.

3.2 (page145):  29, 31, 35, 41

3.3 (page159): 1- 7 all.  9 – 15 odd.

3.4 (page172): 1-13 odd

Notes follow on the next page.



This chapter a empts to answer some fundamental ques ons such as:  Where’s the “middle” of a
data set?    How spread out is the data?  How does a par cular data point compare with the rest of the
data set?  Before we get to these, though, I will review a couple of the basics. 
______________________________
3.0 Recall of defini ons we will need

Recall the following defini ons from the Chapter 1 notes:

Defini on 1.1.2   A parameter is a numerical fact about a popula on or distribu on.  

In most situa ons, the value of the parameter is not and never will be known.  In theory, we can
discuss the average age of all people in Europe, but we will never know the true average.  This is a
parameter. 

Defini on 1.1.3   A sta s c is numerical fact about a sample.  

We can, however, take a sample of people in Europe and compute the average.  This is a sta s c.  In
general, sta s cs are used as es mators of parameters, e.g., we can use the average age of the people
in the sample to es mate the average age of all people in Europe.  Usually the computa on of a
sta s c is done in a similar manner as one would compute a parameter.  For example, consider the
average.  We find averages by adding all the data and dividing by the size of the data set.  The average
of 4, 6, and 11 is 7.  Both popula on averages and sample averages are computed in this manner.

________________________________
Example 3.0.0

Suppose a researcher is interested in the strongest wind speed in a hurricane ever.  This would be a
parameter.   It  is  a  numerical  fact  about  the  en re  popula on  of  hurricanes  that  have  occurred
throughout history.  There is an answer, but nobody knows it, and without a me machine, nobody
ever will.  One way to es mate it is to consider the strongest wind speed ever measured during a
hurricane.  This is a sta s c, based on the sample of all wind speeds ever measured during hurricanes.
It is an example of a biased es mator, as well.  An es mator is biased if it tends to be either too big or
too small rela ve to the parameter it is es ma ng.  The strongest wind speed ever during a hurricane
cannot be smaller than this (think about this).  So, this par cular sta s c (which is an es mator) is
expected to be smaller than the parameter it is es ma ng.  Thus, this is a biased es mator.
________________________________

Note again that I use the words sta s c and es mator interchangeably in the above example. 

Throughout the rest of this chapter, we will focus on commonly used descrip ve sta s cs.  Descrip ve
sta s cs tell us about important features of a data set.  Descrip ve sta s cs give us tools to answer
such fundamental ques ons as:

Where’s the middle of a data set?   
How spread out is the data?  



How does a par cular data point (or a randomly chosen data point) compare to the rest of the data
set?  
Is the distribu on symmetric?  (The same on both sides of the middle.)
Is the distribu on peaked or flat near the middle rela ve to the normal curve? 

To answer these ques ons, we will look at the following:

measures of central tendency: mean, median, mode
measures of varia on or dispersion: variance, standard devia on, range, IQR
measures of loca on: order sta s cs, percen les, and z-scores
the empirical rule and Chebyshev’s Theorem

_____________________________
3.1 Measures of central tendency

Measures of central tendency give us informa on on the middle of a data set.  We discuss here three
commonly used measures of central tendency: mean, median, and mode.

Defini on 3.1.0  The mean of a data set is simply the average of the data.

Here is a list of proper es of the mean. 

•  We use the symbol X (read this aloud as “X-bar”) to represent the sta s c, and μ for the parameter.
That is,  X is the sample mean and μ is the popula on mean.

•  The book uses lazy summa on nota on, and it bothers me.  I’ll briefly explain it here.  

If we have a list of say 10 data points, we could call the first one x1, the second one x2, the third one x3,
and so on.  The Greek le er sigma, Σ, means “sum”.  Properly, one writes:

∑
i=1

10

xi=x1+x2+⋯+x9+x10

The i=1 means start adding with the first data point, and the 10 on top means stop at the 10 th one.  If 
we had N data points instead of 10 we would write:

∑
i=1

N

xi=x1+x2+⋯+x N−1+xN

Using this nota on, the proper way to write the mean (take N numbers each called x with a subscript, 
add them up and then divide by the total number) is:



1
N∑i=1

N

xi=
x1+x2+⋯+x N−1+xN

N

The book just uses  ΣX to denote “add all the x’s.” 

• The mean uses all the data to calculate the center.  This means it has the poten al to be much more
op mal than other methods that do not.

• The mean tends to vary less than the median from the same popula on.  The book is wrong here for
many important types of data sets.

• The mean is unique (every data set has at most one mean) and may not be a value in the data set.
Consider that if you have 3 children and your neighbor has 2 children, together you have an average of
2.5 children.  

• The sample mean is an unbiased es mator of the popula on mean μ, provided the popula on mean
exists.

• The mean can be adversely affected by outliers.

•  There  are  distribu ons  which  have  no  mean.   I  mean  the  mean  does  not  exist  for  certain
distribu ons, but you probably don’t know what I mean!  (Sorry.)  You can always take the mean for a
list of numbers from a popula on, but if the popula on doesn’t have a theore cal mean (expected
value), then this number will tell you nothing about the middle of the data set.

________________________________
Example 3.1.0

A student is ge ng ready to graduate high school and move on to college.  This student is researching
universi es and one piece of informa on the student is collec ng in their study is the average income
of graduates.  The student is extremely interested in the University of North Carolina at Chapel Hill,
because the average income of their graduates is six figures!  What this student doesn’t know is that
Michael Jordan is a graduate of this university, and his (ridiculous) income is used as one of the sample
points when compu ng the average income of graduates.  Michael Jordan’s income is an outlier.  Most
people do not make millions of dollars.
________________________________



So, even though the mean is a good es mator of the central tendency most of the me, there are
situa ons where the mean does not truly capture the central tendency of the data.  This is because
the mean is not robust.

Defini on 3.1.2 A robust es mator is not sensi ve to outliers.

The median, however, is a robust es mator of the central tendency.  In Example 3.1.0, the median
income of graduates is essen ally unaffected by Michael Jordan’s income.

Defini on 3.1.3  The median is the middle value of a sorted data set.

________________________________
Example 3.1.1

If there are an odd number of data points in our sample, this is simply the middle value of the sorted
data.  For example, the median value of {2.3, 4.6, 1.7, 3.2, 1.7} is 2.3.  Here’s how we find it.

Step 1: Order the data from least to greatest: 1.7, 1.7, 2.3, 3.2, 4.6
Step 2: Find the middle data point.  For this data set, it is 2.3.  

If there are an even number of data points in our sample, this is the mean of the two middle values of
the sorted data.  For example, the median value of {2.3, 4.6, 1.7, 3.2, 1.7, 2.9} is 2.6.

Step 1: Order the data from least to greatest: 1.7, 1.7, 2.3, 2.9, 3.2, 4.6
Step 2: Find the two middle data points.  For this data set, they are 2.3 and 2.9.
Step 3: Average the two middle data points.  We get 2.6.   
________________________________

The median is a pre y good measure of central tendency, though it does not use all the data.  That is,
we lose informa on when we use the median alone to es mate the popula on mean μ (which is the
true center). And unlike the sta s c X, the median is not always an unbiased es mator of μ.  We won’t
do much with the median at this level other than to discuss skewness and calculate quar les, but
know that it is s ll quite useful.



It is also useful to look at the mean and median together.  We do this a lot.  Consider the following
graph of average vs. median wages for US workers from 1988 to 2010 (taken from Office of Chief
Actuary, US SSA).  A drop in the ra o between them is one way of measuring increasing economic
inequality.  From the graph, we can see that this ra o has actually dropped about 5% over the these
22 years.  This means median wages have lowered significantly rela ve to mean wages, which tells us
the distribu on of wealth is ge ng more skewed to the right.  Essen ally, a few people have quite a
bit more money.



Yet another measure of central tendency is the mode.

Defini on 3.1.3. The mode of a data set is the value occurring most o en in the data set.  O en mes
it is used with histograms to discuss the loca on of peaks in a data set, although only one of them is
truly the mode.

Why does the mode measure central tendency?  It is
not as simple as follows,  but  you can think of  it  like
this:  if  most  of  the  values  in  your  data  set  are  the
number 3.2,  then we would expect the mean of  the
data set to be close to 3.2 (unless we have an outlier!).
Like the median, the mode is not always an unbiased
es mator  of  μ.  In  fact,  the  mode  is  generally  most
useful  when  analyzing  qualita ve  data,  and  pre y
useless otherwise.  No ce from the histogram on the
right that data sets can have more than one mode.    

Just a couple more things I’d like to men on rela ve to measures of central tendency:

Histogram with skew: See the pictures in the book for this; they do a pre y good job with it.  Note that
skewness is a measure of symmetry, not central tendency, but we can glean informa on regarding the
mean and the median by looking at the skewness.  If you have ques ons on this, post them or email
me. 



Weighted mean:  Be sure to understand the book’s worked-out examples.  Here’s  a bit  more that
might help.

When data points do not contribute to the mean equally, we must use a weighted mean.  Formally, if
the data set consists of x1, x2, x3, . . . ,xn and the corresponding weights are w1, w2, w3, . . . ,wn  then:

 The weighted mean = 
∑
i=1

n

wi xi

∑
i=1

n

wi

________________________________
Example 3.1.2

Say you are taking a 4-credit course, three 3-credit courses, and one 2-credit course.  Suppose also
that an A is four quality points, a B is 3 quality points, and a C is 2 quality points.  You get a B in the 4-
credit course, two C’s and an A in the 3-credit courses, and a B in the 2-credit course.  So, in general,
your GPA is calculated as follows:

4∗3+3∗2+3∗2+3∗4+2∗3
4+3+3+3+2 =2.8

 
_______________________________

Not ge ng the weighted mean?

Here’s a li le extra.  I’m going to make some non-standard defini ons along the way to try and sort
this out.  Let’s say there are 3 ways to take a mean: unweighted, simple weighted, and non-simply
weighted.

Let’s start with an unweighted mean and look at it in a different way.  This is what people intend when
they say “take the mean.”
________________________________
Example 3.1.3

Suppose you have 2 exams: x1 is the score on test 1, and x2 is the score on test  2.  The mean is
computed as (x1 +  x2)/2.  I will turn this into what I’ll call a simple weighted mean.  Here’s what I’m
calling the unweighted mean:

x1+x2

2
=
x1

2
+
x2

2
=50 % (x1)+50 % (x2)



So your grade is 50% composed of test 1, and 50% composed of test 2.  Pre y easy, right?  No ce that
50% + 50% = 100%.  These percentages are called the weights.  There is a cool geometric picture that
goes with this as well, but lets forge-on algebraically.

Consider the same scenario, but make it four tests.  One adds the four scores, then divides by 4.  Lets
see the weights:

x1+x2+x3+x4

4
=
x1

4
+
x2

4
+
x3

4
+
x4

4
=25% (x1)+25% (x2)+25% (x3)+25 % (x4)

All of the weights turn out to be 25%.  The unweighted mean could (or should?) be called the equal-
weights  mean.   Each  data  point  has  an  equal  weight.   If  there  were  10  tests,  each  data  point
contributes 10% to the mean.

Now lets change to the  simple weighted mean.   Here’s how it  will  work: you are given 100% to
distribute to the data points as you see fit.  Let’s suppose a class has 4 components:  par cipa on (p)
is 10%, quizzes(q) are 30%, the midterm(m) is 20%, and the final(f) is 40%.  The weighted mean is
given by the formula:

OverallGrade  =  0.1*p + 0.30*q + 0.20*m+ 0.40*f

Instead of giving everything equal weights, we now have put more emphasis on different components.
________________________________

The  non-simply weighted mean, what the rest of the world calls the weighted mean, is when we
allow the weights to not sum up to 100%.  Here’s the funny part: we fix it so that the weights sum up
to precisely 100% in the process of compu ng the weighted mean.  That is, every weighted mean is
transformed into a simply weighted mean while you do the computa on.  I’ll give you two examples.

________________________________
Example 3.1.4

Let’s say a teacher’s syllabus reads like this: the midterm is worth 2 tests, there are two “normal”
tests, and a final worth 3 tests.  Many people (but not me) will compute the grade as below, with the
idea that really there are 7 tests:  two midterms(copy the score twice),  two tests,  and three final
exams.

OverallGrade  =  (m + m + t1 + t2 + f + f + f ) / 7

Well let’s see here:
  



2m+t1+t2+3 f
7

=2 m
7
+
t1

7
+
t2

7
+3 f

7
≈0.2857m+0.1429∗t1+0.1429∗t2+0.4286∗f

If  they  understood  a  weighted  mean,  they  could  just  say  the  midterm is  worth  (approximately)
28.57%, each test is worth 14.29%, and the final is worth 42.86%.  Once you understand, then you
realize that this is completely possible as well:

________________________________
Example 3.1.5

The midterm is worth 1.2 tests, there are two “normal” tests, and a final worth 19.3 tests.  Do that out
(really, you do it!), and you see the weights are:  

1.2m+t1+t2+19.3 f
1.2+1+1+19.3

=
1.2m
22.5

+
t1

22.5
+

t2

22.5
+

19.3 f
22.5

≈0.0533m+0.0444∗t1+0.0444∗t2+0.8578∗f

The formula on the far le  (above) is exactly the formula for weighted means.  The divisor is the
number of tests: 1.25+1+1+19.3 = 22.5 tests.  No ce at the far right there are four weights, each one
giving you the frac on of the final score that each data point is weighted by.  They should sum to
100%, and they would except for the rounding error.
________________________________

So let’s review the point of the last two examples.  What the world calls weighted means is a broad
class of types of means that can be categorized.  Unweighted means happen when each of the data
points contribute equal ra onal weights and the sum of the weights is 1.  Simple weighted means
happen when the data points contribute unequal weights and the sum of the weights is 1.  And non-
simply weighted means happen when the data points contribute unequal weights and the sum of the
weights is not necessarily. 

For anyone looking to con nue on in mathema cs, this idea of weigh ng different points occurs o en.
The  expected value  of  a  discrete  random  variable  (which  we  discuss  in  the  next  sec on)  is  the
weighted  mean  of  all  possible  outcomes  where  the  weights  are  probabili es  per  outcome.
(Some mes this is an infinite sum.)  This is exactly the dot product of a vector of weights with the
vector of outcomes.  In fact, it is the projec on of a vector onto another vector using the taxicab
metric. . .I should stop now.  There are con nuous analogs as well . . I will stop.  Anyway, this concept
is very useful.



3.2 Measures of varia on/dispersion

Measures of varia on (or dispersion) tell us how ‘spread out’ the data is.  Measures of dispersion are
essen al to the field of sta s cs.  In this sec on we focus on the commonly used range, interquar le
range (IQR), variance and standard devia on.   

Defini on 3.2.0 The range of a data set is the distance between the largest value in the data set and
the smallest value in the data set.  (Sta s cally, it is not two numbers separated by a dash!)

________________________________
Example 3.2.0

Consider the following data sets:

A = {3, -4, 6, 8, -10}, B = {5, 7.2, 0, 9}, and C = {0, -13, -4.2, -9, -13.1}.

Range(A) = 8 -(-10) = 18, Range(B) =9-0 = 9, and Range(C) = 0-(-13.1) = 13.1. 
________________________________

The range is not terribly useful for the types of data we’ll deal with in this class, but it is one measure
of spread.  Where it becomes useful is well beyond the scope of this course.

Another handy measure of dispersion is the IQR.

Defini on 3.2.1 The Interquar le range (IQR) is the third quar le minus the first quar le, i.e., IQR =
Q3 - Q1.

So, in  order to understand the IQR, we must  first  understand the concept of  quar les.   The first
quar le of a data set is the data point Q1 such that one-quarter (25%) of the data points are smaller
than Q1.  It is the median of the first half of the ordered data set.  The second quar le, Q2, is the
median.  Recall that 50% of the data is smaller than the median.  The third quar le, Q3, is the median
of the second half of the ordered data and has the property that three-quarters (75%) of the data
points are smaller.    

________________________________
Example 3.2.1

Consider the following data set, already sorted for us:

{9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24}.

There are an odd number of data points in this set, so the median is the middle number.  This is our
second quar le:

median = Q2 = 18.



Now to get the first quar le, we remove the median and find the median of the lower half of the data.
The lower half of the data is
9, 12, 13, 14, 16, 17.

So, we get Q1 = (13+14)/2 = 13.5.  We do the same thing with the upper half of the data to get Q3 = 21.
Thus, the interquar le range of this data set is 

IQR = 21 - 13.5 = 7.5.
This is a measure of varia on.
________________________________



Boxplots
The  largest  value  (maximum),  the  smallest  value  (minimum),  and  the  three  quar les,  all  taken
together, make up what is known as a 5 number summary.  Five number summaries are a great way to
get a quick feel for a dataset, and even be er for comparing datasets.  Five number summaries are
used to construct box-plots or “box and whiskers” plot.  Your book does a pre y good job with these,
but here’s an extra example to help.  I like five number summaries.
________________________________
Example 3.2.2

Let’s construct a box-plot for the data set given in Example 3.2.3.  Here’s the data again:

{9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24}.

Our five number summary is: min = 9,  Q1 =13.5,   Q2 =18,  Q3 =21,  max = 24.

Step 1: Draw a number line over an interes ng range includes your min and max.  (If this was data you
cared about, you’d know what interes ng means here.)

Step 2: Plot your five number from the summary on your number line.  Draw a line connec ng the two
on each edge.  I usually do this floa ng above the number line.  Like this.

  

Step 3: Draw a box with edges at the first and third quar les and a ver cal line through the median.

That’s it.  That’s a boxplot.  Note that the middle 50% of the data is in the box.  The smallest 25% of
the data is in the “le  whisker” and the last 25% is in the “right whisker”.  The median is the ver cal
bar in the box.  Some mes people put the mean in by using a dashed ver cal line.



    
________________________________
Defini on 3.2.2 The variance (Var) is a measure of how spread out the data points are rela ve to each
other.  The variance is about equal to the mean of the squared devia ons.  What that means will be
explained later.

Defini on 3.2.3  The Standard Devia on (SD) is the square root of the variance.

These are the two most widely used measures of dispersion.  Following is a list of proper es of these
two measures of dispersion:

• We generally use the symbol s and s2 to represent the sta s c, and σ and σ2 for the parameter, i.e., s
and s2 are the sample standard devia on and sample variance, respec vely, and σ and σ2 are the
popula on standard devia on and popula on variance, respec vely.  The la er symbols are lower-
case sigmas from the Greek alphabet.  We read them “sigma” and “sigma-squared”.  I will also use Var
and SD.

• The variance is, for many deep mathema cal reasons (most of which are well beyond the scope of
this course), one of the best ways of measuring variability in data.

• Bigger values indicate more varia on, that is, greater dispersion of the data.

• The SD is always the square root of Var.  For example, if Var = 1.21, then the SD = 0.11 and if the SD =
2.5, then Var = 6.25. 

• The smallest value possible for the Var and for SD is 0.  The only way to get a 0 for a variance is by
having no variability at all.  The following is an example of a data set with a Var = 0:  {14, 14, 14, 14,
14}.

• To calculate Var appears in mida ng, but if you take it step-by-step, it’s not so bad.  Just take a data
point, subtract the mean, and square it.  Do this with every data point.  When you’re done, sum up all
the squares that you have (this is actually called the sum of the squared devia ons), and then divide
by N, the number of elements in the popula on.  If you have a sample, divide by n -1, instead (recall
that n is your sample size, i.e., the number of elements in your sample)*. This is called the sample
variance.  Here’s the formula for the two variances:

σ2
=

1
N∑i=1

N

(X i−X )2 s2
=

1
n−1∑i=1

n

(X i−X )2

*It may seem weird to divide by n-1 instead of n, but we do this so that our sample variance is an
unbiased es mator of σ2.

• To calculate Var and SD by hand, it is useful to make a table.  Nowadays, most people just use a
computer.



Example 3.2.3

Say we ran an experiment and have the following data set.  You are taking an exam and must find the
standard devia on.  Data set: {9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24, 27}  

Step 1:  Find the mean.

Add all the data points and divide by 14 (our sample size).
We get that = 18.

Step 2: Make a table.    First, subtract the mean from each data point.

X X- 18
9 -9

12 -6
13 -5
14 -4
16 -2
17 -1
18 0
18 0
19 1
20 2
22 4
23 5
24 6
27 9

Step 3: Now square the last column.

X X- 18 (X- 18)2

9 -9 81
12 -6 36
13 -5 25
14 -4 16
16 -2 4
17 -1 1
18 0 0
18 0 0
19 1 1
20 2 4
22 4 16
23 5 25
24 6 36
27 9 81



Step 5:  Sum all the squares.  In this case, if you add them all you get 326.

Step 6:  If you are compu ng the sample variance, divide by one smaller than the sample size. In this
case, that’s 13.  If you are compu ng the popula on variance, divide by the popula on size.  In this
example, that would be 14.

So the sample variance is: 326/13 ≈ 25.08 (squiggly equal means approximately equal to).

And so the standard devia on (take the square root) is about 5.008.
________________________________

We don’t always have to actually calculate the variance in order to compare the spread of different
data sets.  We can see the spread with visual aids such as many of the charts/graphs in Chapter 2 of
your text.  And if the data sets are simple enough, we can just ‘eyeball’ the data as follows.

________________________________
Example 3.2.4

Rank these three data sets in order of increasing variance without calcula ng anything except the
mean:

   A = {1,2,3,4,5}, B ={-1,1,3,5,7}, and C ={1,3,3,3,5}.

First, note that the mean of each set is 3.  So now observe each set carefully and find which set
contains points that are the least distance from the mean and the furthest from the mean. 

It seems a li le more obvious once you subtract the mean from each:

A-3 = {-2, -1, 0, 1, 2} B-3={-4, -2, 0, 2, 4} C-3 = {-2, 0, 0 ,0 2}

Here they are smallest to largest variance: {1,3,3,3,5}, {1,2,3,4,5}, and then {-1,1,3,5,7}, i.e., C has the
smallest variance and B has the largest variance.  You could check this by finding the variance of these
sets.  I get 

Var(A)  ≈  1.58, Var(B)  ≈  3.16, and Var(C)  ≈ 1.41. 

You could have also constructed box-plots for each of the data sets and compared them visually. 



3.3 Measures of posi on/loca on

By the term measure of posi on, we mean where is a data point located with respect to the rest of
the data.  In this sec on, we a empt to answer such ques ons as: is a data value less than the value
of the mean, i.e., does it lie to the le  of the mean?  Is it to the right of the mean?  How many
standard devia ons from the mean is the data point?
We begin with  a  thorough discussion  of  the  all-important  concept of  standardized scores,  i.e.,  z-
scores.

Defini on 3.3.0: A z-score (or standard score) corresponding to a data point is the number of standard
devia ons the data point  falls above or below the mean.  If the data point is equal to the mean, then
its corresponding z-score is 0.  If a data point is smaller than the mean, its corresponding z-score is
nega ve, and if a data point is greater than the mean, its corresponding z-score is posi ve.

Be sure you know how to compute these, i.e., take a data point, subtract the mean of the data set,
and divide by the standard devia on of the data set.  Recall that the SD is the square root of the
variance and both are measures of varia on.   Let’s go over the computa on of it all first, and then try
to get an intui ve feel for what’s going on here.  

If the data point is  x, the mean of the data set is  X, and the standard devia on of the data set is  s,

then: the z-score (denoted as z) is computed as: z= x−X
s

 

If you have a z-score and need the original data point you reverse this algebraically to get:

x=z∗s+X
_______________________________
Example 3.3.0

You are presented with a data set that has a mean of 9 and a variance of 16.  

(a) Suppose 6 is a data point.  Find its corresponding z-score.

Take the data point, 6, subtract the mean, and then divide by 4 (4 is the square root of 16) to get a z-
score of -0.75.

(b)  Suppose 15 is a data point.  Find its corresponding z-score.  You should get 1.5.

(c)  Suppose you are told that a data point has a corresponding z-score of 1.8.  Find the data point.

Take 1.8, mul ply by s (which is 4) and then add 9.  We get that x = 16.2.
________________________________

Don’t miss the very important fact that the z-score of a data point is simply the number of standard
devia ons above or below the mean (reread the defini on above).  Let us try to expound on exactly



what this means, and we’ll also try to provide pictures to complement the text.  A er we’ve got a
feeling for what a z-score is, then we’ll relate it to the normal curve, which we’ll explore in Chapter 6.



Example 3.3.1

Recall the data set from Example 9: {9, 12, 13, 14, 16, 17, 18, 18, 19, 20, 22, 23, 24, 27}.
 We have that X = 18 and the SD ≈ 5.008. 

(a)  Find the new data set created by conver ng each point to its z-score.  Here is a table to help us
keep the informa on organized. 

X X- 18 (X- 18)/ 5.008
9 -9 -1.797

12 -6 -1.198
13 -5 -0.998
14 -4 -0.799
16 -2 -0.399
17 -1 -0.200
18 0 0.000
18 0 0.000
19 1 0.200
20 2 0.399
22 4 0.799
23 5 0.998
24 6 1.198
27 9 1.797

And so we see that the transformed data set is:
 
{-1.797,-1.198,  -0.998, -0.799, -0.399, -0.200, 0, 0, 0.200, 0.399, 0.799, 0.998, 1.198, 1.797}.

This new data set has mean of 0 and SD of 1.  (Calculate them if you want.)

(b) You are told that a data point has a corresponding z-score of 0.2.  What is the value of the data
point?

Well, you can just look at the table and see that it is 19 (rounded).  But, you can also use algebra as
follows:

0.2*s + X = 0.2*5.008 + 18 = 19.016



Say we start with a random sample of size 500 from a bell-shaped with mean of 50 and SD of 10.  Here
is a picture of this data set.

Here we convert all the data to z-scores.  This data set is distributed with the same shape but with
mean of 0 and SD of 1.  Below is a picture of this new data set.



Compare these two pictures.  All we did was slide the histogram to the le , and then mul ply by an
appropriate scalar (a scalar is just a number that we can mul ply by to shrink things or to blow things
up) in order to have a variance of 1.  The essence of the data remains--the distribu on itself remains
unchanged except for the loca on and scale.



The important part of z-score transforma ons is that the posi ons of all the data points rela ve to one
another do not change, i.e., it is as if we pick up the picture, shrink/expand it depending on the SD,
and place it with its center on zero.  For example, if a data point was 2.33 SD’s below the mean before
the  z-score  transforma on,  then  it  is  s ll  exactly  2.33  SD’s  away  from  zero  a er  the  z-score
transforma on.  In fact, its z-score is 2.33.  Let us reiterate, the z-score of a data point is simply the
number of standard devia ons above or below the mean. 

Hopefully, by now you are wondering why we do this.  I’m glad you asked.  It’s easier to compute and
compare data with z-scores.  Indeed, if we want to compare two points from two different data sets, it
makes good sense that we must first get them to the same scale of measurement, doesn’t it?  These
gadgets will be very important to us, so learn them well. 



3.4 The Empirical Rule and Chebyshev’s Theorem

The Empirical Rule states that, for a sample from a normally distributed popula on (again, we will
explore this concept in Chapter 6 - for now, think bell-shaped), the following proper es hold:

• approximately 68% of the data lies within 1 SD from the mean.
• approximately 95% of the data lies within 2 SD’s from the mean.
• approximately 99.7% of the data lies within 3 SD’s from the mean.

For applica on purposes with respect  to z-scores, this  means that a er we transform to z-scores,
about 68% of the z-scores will fall in the interval (-1, 1), about 95% of the z-scores will fall in the
interval (-2, 2), and about 99.7% of the z-scores will fall in the interval (-3, 3).

     



Example 3.4.0

Consider a random sample of 400 from a popula on with a mean of 100 and SD of 15.

(a) According to the empirical rule, about 34% of the sample values fall in the interval (100, x).  Find x.

We can reason our way through this.  Since (100, x) captures 34% of the data points and 100 is the
mean, x must be 1 SD above 100 (by the empirical rule).  Since the SD is 15, we add 15 to 100 to get 1
SD above 100.  And so, x = 115.

(b) What percentage of the data points have values less than 70?

70 is 30 below the mean of 100.  That is two SDs.  So 70 is 2 SD’s below the mean.  Recall that the
empirical rule states about 95% of the data is within 2 SD’s of the mean.  This means that there is
about 5% of the data outside of 2 SDs of the mean (in the tails).  Half of that is in the right tail (below 2
SDs) and the other half is in the upper tail.  That number is 2.5%.

(c) How many data points in the sample have values above 130?

130 is two SDs above 100.  From what we did in (b) we see that 2.5% of the data points have values
greater than 130, as this is the right-tail.  So, we find 2.5% of 400 (our sample size).  Mul ply 400 by
0.025 to get 10.  This means that about 10 data points are greater than 130.  
________________________________

All that was fun, but what if the data values we’re most interested in are not nice mul ples of the SD?
Well, luckily enough for us, people have already computed all the values we could ever be interested
in and put them into a rela vely easy to read table called the z-Table.  So, we convert to z-scores and
use this table; we will begin doing this in Chapter 6.  

Chebyshev’s Theorem deserves men on because it is actually quite remarkable.  It can be thought of
as an empirical-like rule that holds for any distribu on.  Chebyshev proved that, given any distribu on,
at least 75% of the data values will be within 2 SDs of the mean, at least 89% of the data values will be
within 3 SD’s of the mean, and at least 94% of the data values will be within 4 SD’s of the mean.

This table gives you a guaranteed percentage of the data within a given number of standard devia ons
according to Chebyshev’s rule.

Std Dev Percentage
1.5 55.56%

2 75%
2.5 84%

3 88.89%
3.5 91.84%

4 93.75%


