Question.
The average college student produces 640 pounds of solid waste a year, including 500 cups and 320 pounds of paper. If the standard deviation is approximately 85 pounds within what weight limits will at least 88.89% of all garbage lie?

Let's use a number line. The mean is 640 , and we have an SD of 85 . So. . . I'll put in 640 at the middle and 'skip' by 85 's so to speak. Why 640 ? It is our 'best' measurement of the middle. Skipping by 85 's happens because the SD is, in some sense, the 'best' measurement of spread. (Think z-scores.)

We do this for quite a few things, so it's important that you "see" the picture.

Here's the picture.

640 is the middle.

555 up to 725 , is all the weights within one SD of the mean. (Red highlight.) 470 up to 810 , is all the weights within two SD's of the mean. (Yellow highlight.) 385 up to 895 , is all the weights within three SD's of the mean. (Green highlight.)

Empirical rule. If the parent distribution has a standard deviation and is reasonably close to being bell-shaped then about 68% is in the red, 95% is in the yellow, and 99.7% is in the green.

PS: It's pretty tough to truly verify that the distribution is close enough to being bell-shaped without consulting a statistician.

Chebyshev's rule. If the parent distribution has a standard deviation, then no matter what the parent distribution's shape is, at least $1-1 / \mathrm{k}^{2}$ percent of the distribution lies within k SD's of the mean, for $\mathrm{k}>1$. To build a few of them:

When $\mathrm{k}=1.5$ we have $1-1 / \mathrm{k}^{2}=0.555555=55.5 \%$ (rounding.)
When $\mathrm{k}=2$ we have $1-1 / \mathrm{k}^{2}=0.75=75 \%$
When $\mathrm{k}=3$ we have $1-1 / \mathrm{k}^{2}=0.888888=88.9 \%$ (rounding.)
Using Chebyshev's rule we have 75% is in the yellow, and 88.9% is in the green.

