Paper Models for Surfaces with Curvature

Howard Iseri
Mansfield University
Objectives

Geometric spaces can be manipulated.

Introduce geodesics.

Introduce total curvature.

Motivate Gauss-Bonnet Theorem.

Motivate 2-manifolds.
Notes

Labs consist of a series problems.

Three students worked together outside of class.

Students needed little help from me.

Accessible to undergraduates.
Sample Problem from Lab 2

Problem: Accurately describe a surface and two geodesics with exactly three points of intersection.

Note: Gauss-Bonnet theorem requires that each of the enclosed regions must have total curvature greater than θ.
Solution allowing cone points

Remove two wedges measuring ψ radians.

Must have $\psi > \theta$.

Introduces two cone points with total curvature of ψ at each.
The corresponding paper model

Continuation of geodesics are rotated by ψ radians.
Gauss-Bonnet Theorem

Geodesic curvature C: $\kappa_g = \frac{1}{r}$.

Total geodesic curvature on C:

$$\int_C \kappa_g \, ds = \frac{1}{r} (2\pi r - \theta r) = 2\pi - \theta.$$

Compare to Gauss-Bonnet:

$$\int_C \kappa_g \, ds = 2\pi - \int_R K \, dA.$$
Sphere is tangent to the cone at C.

The geodesic curvatures for C are the same.

Total curvature on the sphere is also θ.

$$\int_D K \, dA = \int_D \frac{1}{R^2} \, dA = \cdots = \theta$$