Objectives: Basic counting formulas
Cantor set problem from the Homework.

\[0.9999\ldots = 1 \]

We should occasionally remind ourselves that an infinite decimal is defined in terms of a limit. The standard definition would say that

\[0.999\ldots = \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \cdots = \sum_{i=1}^{\infty} \frac{9}{10^i} \]

From Calculus II, we know for \(r < 1 \) that a geometric series converges to

\[\sum_{i=0}^{\infty} ar^i = \frac{a}{1-r} \]

This tells us that

\[0.9999\ldots = \sum_{i=1}^{\infty} \frac{9}{10^i} = -9 + \sum_{i=0}^{\infty} \frac{9}{10^i} = -9 + \frac{9}{1 - \frac{1}{10}} = -9 + \frac{90}{9} = 1. \]

Finite cardinality of power sets

Given a set \(A \), we saw that the power set, \(P(A) \), always has larger cardinality than \(A \). If \(A \) is finite, we can say how many elements \(P(A) \) has.

As a basic fact, we can say that

\[\| P(A) \| = 2^\| A \|. \]

In fact, mathematicians will extend this formula to levels of infinity, for example, \(\| \mathbb{R} \| = 2^\| \mathbb{N} \|. \)

At least as important as the facts, I think, are the connections with other facts and the underlying structure. So let’s take a look at this.

Correspondence with Binary Numbers. Take, for example, the set \(A = \{ 1, 2, 3, 4 \} \). The power set \(P(A) \) is the collection of all the subsets of \(A \), and we’d like to count how many subsets there are. We can describe each subset as a 4-term sequence of 0’s and 1’s. For example,

\[1, 0, 1, 1 \leftrightarrow \{ 1, 3, 4 \} \]

and

\[0, 1, 1, 0 \leftrightarrow \{ 2, 3 \}. \]

In particular, the first term of the sequence tells us whether the first element of the set is in the subset or not, and so on.

Once we have a 4-term sequence of 0’s and 1’s, we can pair these easily with all the 4-digit (4-bit, might be more appropriate) binary numbers. Since \(1111_2 = 8 + 4 + 2 + 1 = 15 \), there must be 16 subsets of \(A \) (since we’re also counting \(0000_2 \)). There are 32 5-digit binary numbers, 64 6-digit binary numbers, etc., so this agrees with the original fact.
Homework 13

1. We could define the number 0.9999… as the limit of the sequence
 \[0.9, 0.99, 0.999, 0.9999, \ldots \]
These numbers are clearly getting bigger and closer to 1, but do they get all the way to 1? This would be equivalent to the following sequence converging to 0:
 \[1 - 0.9, 1 - 0.99, 1 - 0.999, \ldots \]
 a. Simplify the terms of this last sequence.
 b. What is \(\lim_{i \to \infty} \frac{1}{10^i} \)?

2. Recall that for \(r < 1 \), a geometric series converges to
 \[\sum_{i=0}^{\infty} ar^i = \frac{a}{1 - r} \]
 a. In Base 4, the expansion
 \[0.33333\ldots _4 = \frac{3}{4} + \frac{3}{4^2} + \frac{3}{4^3} + \cdots = \sum_{i=1}^{\infty} \frac{3}{4^i} \]
 Use the geometric series formula to find this sum. Don't forget that this series starts at \(i = 1 \), not \(i = 0 \).
 b. Do the same thing for \(0.022222\ldots _3 \) in Base 3.

3. Write the following Base 3 numbers in Base 10.
 a. 12.223
 b. 0.0113
 c. 223

4. Write the following numbers in Base 3.
 a. \(\frac{3}{27} \)
 b. \(\frac{22}{27} \)
 c. \(\frac{42}{9} \)

5. Let \(A \) be the set of letters in the alphabet. How many elements are there in \(P(A) \)?

Answers: 1a) 0.1, 0.01, 0.001, … b) 0.
2a) 0.333… = \(-3 + 3 \cdot \frac{1}{1-\frac{1}{4}} = \frac{12}{9} = \frac{4}{3} \) 1. b) \(\frac{1}{3} \).
3a) 3 + 2 + \(\frac{2}{3} + \frac{2}{9} = 11 + \frac{2}{9} = 5.88888\ldots \)
 b) \(\frac{1}{9} + \frac{1}{27} = \frac{1}{9} = 0.148148148\ldots \)
 c) 6 + 2 = 8.
4a) 0.0023; b) \(\frac{22}{27} = \frac{18+3+1}{27} = 0.2113; \) c) \(\frac{42}{9} = \frac{27+9+6+0}{9} = 11.203 \).
5) \(P(A) = 2^{26} = 67,108,864 \).