1. Summary of basic group facts

In the last problem of Homework 03, you showed that every element of a group must appear exactly once in every row of the multiplication table for that group. A similar proof would show that every element appears exactly once in every column. Let me prove it again here.

Theorem 1. Let G be a group, and let $a, b \in G$. The element a appears exactly once in the row of the multiplication table consisting of the products $b \cdot x$, which we’ll call the b-row.

Proof. The element a occurs in the b-row, if the equation

\[b \cdot x = a \]

has a solution (for x, the unknown). Since G is a group, b must have an inverse, which we will call b^{-1}. Multiplying both sides of equation (1) by b^{-1} (on the left) gives us

\[x = b^{-1} \cdot a, \]

which must be a unique element of the group, since \cdot is a binary operation. We see, therefore, that

\[b \cdot (b^{-1} \cdot a) = a, \]

so a must lie in the b-row and the $(b^{-1} \cdot a)$-column. It may be clear to you that the solution to the equation is unique, but we can emphasize this fact with the following. Suppose x and y are both solutions to equation (1). Then

\[b \cdot x = a \quad \text{and} \quad b \cdot y = a. \]

Therefore,

\[x = b^{-1} \cdot a \quad \text{and} \quad y = b^{-1} \cdot a, \]

and so $x = y$, since products are unique. This explicitly shows that any two solutions to equation (1) must be equal to each other. \(\square\)

A similar proof shows that every element occurs exactly once in each column. We showed last time that for each element of a group, it’s inverse is unique. It’s even easier to show that the identity is unique.

Suppose $e, e' \in G$ are both identities in the group G. Then the following must be true.

\[e = e \cdot e' = e'. \]

In other words, all identities must be equal to each other. We can summarize in the following theorem.

Theorem 2. Let G be a group. G has exactly one identity. For each element $a \in G$, a has exactly one inverse (which we’ll call a^{-1}). Every element of G occurs exactly once in each row and column.

This illustrates the fact that, while they have relatively few constraints, groups have a lot of structure. In fact, groups with just one, two, or three elements are completely determined by the properties of a group.

2. 0-, 1-, 2-, and 3-element groups

A group is a set with an associative binary operation defined on it, and furthermore, it has an identity, and every element has an inverse.

1. A set can be empty. Can a group be empty?

2. Consider the following multiplication table. Is it a group?
Table 1. The multiplication table for a group with one element.

<table>
<thead>
<tr>
<th>*</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

A group with two elements must have the identity e and another element, which we could call a. The identity forces us to fill in the first row and first column as in Table 2.

Table 2. The multiplication table for a group with two elements.

<table>
<thead>
<tr>
<th>*</th>
<th>e</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Since every element of the group must occur in every row and column exactly once, there is only one choice for the remaining cell.

In a group with three elements, we must have $G = \{ e, a, b \}$, and the identity element forces the table to look like Table 3.

Table 3. The multiplication table for a group with three elements.

<table>
<thead>
<tr>
<th>*</th>
<th>e</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

3. Is it possible for $a \ast a = e$ in Table 3? If so, fill in the rest of the table.

4. Is it possible for $a \ast a = a$? If so, fill in the rest of the table.

5. Is it possible for $a \ast a = b$? If so, fill in the rest of the table.

3. Generators

All groups must have an identity element e. Let’s suppose that we have a group G, and it has at least two elements, the identity e and something else s. Since s and s are both elements of this group, $s \ast s$ must also be an element of the group. This means that $(s \ast s) \ast s$ must belong to G, as well. The binary operation in a group must be associative, so we can just write this as $s \ast s \ast s$ without ambiguity. We will use exponential notation, to save us some writing, and we’ll write

\[
s = s^1 \\
\]
\[
s \ast s = s^2 \\
\]
\[
s \ast s \ast s = s^3 \\
\]
\[
s \ast s \ast s \ast s = s^4 \\
\]

etc.
and these all must be elements of the group \(G \). Furthermore, since \(G \) is a group, the element \(s \) must have an inverse, which we can call \(s^{-1} \). Note that if we multiply \((s^{-1})^3 \ast s^3\), we get

\[
(s^{-1})^3 \ast s^3 = s^{-1} \ast s^{-1} \ast s^{-1} \ast s \ast s \ast s \\
= s^{-1} \ast s^{-1} \ast (s^{-1} \ast s) \ast s \ast s \\
= s^{-1} \ast s^{-1} \ast e \ast s \ast s \\
= s^{-1} \ast s^{-1} \ast s \ast s \\
= s^{-1} \ast (s^{-1} \ast s) \ast s \\
= s^{-1} \ast e \ast s \\
= s^{-1} \ast s \\
= e
\]

(8)

In other words, \((s^{-1})^3\) is the inverse of \(s^3 \). It makes sense, therefore, for us to use the notation

\[
(s^{-1})^3 = s^{-3},
\]

and

\[
s^{-3} \ast s^3 = s^{-3+3} = s^0 = e.
\]

Exponential notation works precisely as we’re used to, even though \(\ast \) may have nothing to do with regular multiplication.

I will use the symbol \(\mathbb{Z} \) for the integers. We have that, if \(s \in G \), then \(s^n \in G \) for any \(n \in \mathbb{Z} \). Now, this is not to say that \(G \) must be infinite. We know that’s not true. It may be, for example, that \(s^3 = s^7 \). If this were the case, then we would also know the following.

\[
s^3 = s^7 \\
\ast s^{-3} \ast s^3 = s^{-3} \ast s^7 \\
e = s^4.
\]

(11)

This can be true, if \(s = e \) or \(s^2 = e \), but if not, the number 4 will be important to us.

Definition 1. For a group \(G \), if \(s \in G \) and \(n \) is smallest positive integer such that \(s^n = e \), we will say that \(s \) has order \(n \). Only the identity can have order 1, and if \(s^n \) is never \(e \), then the order of \(s \) is \(\infty \).

We can often describe a group by giving the order of a few elements (which we’ll call *generators*) and saying how these elements interact. For example, consider the smallest group \(G \) that satisfies the following: \(s, t \in G \), \(s \) has order 3, \(t \) has order 2, and \(t \ast s = s^2 \ast t \). These three “rules” allow us to simplify any expression involving \(s \) and \(t \). For example,

\[
s^7 = s^3 \ast s^3 \ast s = e \ast e \ast s = s,
\]

and

\[
t^3 \ast s^7 \ast t^5 = t \ast s \ast t \\
= (t \ast s) \ast t \\
= (s^2 \ast t) \ast t \\
= s^2 \ast t^2 \\
= s^2.
\]

(13)

If you think about it, we should always be able to write any expression involving \(s \) and \(t \) as one of the following

\[
G = \{ e, s, s^2, t, s \ast t, s^2 \ast t \}.
\]

(14)

The smallest group including \(s \) and \(t \) and satisfying \(s^3 = e \), \(t^2 = e \), and \(t \ast s = s^2 \ast t \) must have these elements.
4. Homework 04

Problems 1-6 refer to the group G containing s and t with $s^3 = e$, $t^2 = e$, and $t \ast s = s^2 \ast t$. Write your answers in the form $s, t, s^2, s^2 \ast t$, etc., with the s's first.

1. What is $s \ast (s \ast t)$?

2. What is $t \ast s$?

3. What is $(s \ast t) \ast (s \ast t)$?

4. What is $(s^2 \ast t) \ast s^2$?

5. The group G from Problems 1-4 is actually the same as D_3 with $s = 120^\circ$ and $t = \cdot$. Which element of D_3 corresponds to s^2?

6. Which element of D_3 corresponds to $s^2 \ast t$?

Problems 7 and 8 refer to the group $H = \{ e, s, s^2, t, s \ast t, s^2 \ast t \}$ that satisfies $s^3 = e$, $t^2 = e$, and $t \ast s = s \ast t$. Note that this last relation is different from G, and this relation also makes H abelian.

7. What is $(s \ast t) \ast s^2$?

8. Do any of the elements of H have order 6?

Problems 9 and 10 refer to a group with four elements. The first row and column must look like Table 4.

Table 4. The multiplication table for a group with four elements.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>

9. Suppose $a \ast a = e$. What is $b \ast c$? (There are two answers. Give both.)

10. Suppose $a \ast a = b$. What is $b \ast c$?

There are four ways you can complete Table 4, but three of these are actually the same. Of the four tables, one has $a, b,$ and c all having order two. In the other tables only one of $a, b,$ and c has order two (the other two have order four).

Bye.