1. The Fundamental Homomorphism Theorem

Given a group G, it turns out that the subgroups of G and the homomorphisms on G almost contain the same information. Let me review cosets and kernels a bit, and then I’ll explain what I mean.

What we know about the cosets of H, a subgroup of G.

- $H = eH$ is one of the left cosets.
- Any two cosets of H are the same size as H.
- Given two cosets aH and bH, either $aH = bH$ (as sets) or $aH \cap bH = \emptyset$.

What we know about the kernel of a homomorphism $f : G \to J$.

- $\ker(f)$ is a subgroup of G.
- If $f(a) = x$, then $aK = f^{-1}(x)$, where $K = \ker(f)$. That is, the left cosets of the kernel are precisely the preimages of elements in J.

Let’s look at the last item as a review.

Let $f : G \to J$ be a homomorphism, K the kernel of f, and a an element of G. Certainly, $f(a)$ is some element of J, and let’s call it x. I want to show that $aK = f^{-1}(x)$. Note that both aK and $f^{-1}(x)$ are subsets of G. We want to show that they contain precisely the same elements.

Show $aK \subset f^{-1}(x)$. Let $ak \in aK$. Then

\[f(ak) = f(a)f(k) = xe = x. \]

This means that $ak \in f^{-1}(x)$. Since ak is a generic element of aK, all the elements in aK also belong to $f^{-1}(x)$.

Show $f^{-1}(x) \subset aK$. Let $b \in f^{-1}(x)$. Then $f(b) = x$. We need to find a $k \in K$ so that $b = ak$. Since $f(a) = x$ also, we know that

\[f(a^{-1}b) = f(a)^{-1}f(b) = x^{-1}x = e, \]

so $a^{-1}b \in K$. Let’s call this element k, so

\[a^{-1}b = k, \]

and

\[b = ak \in aK. \]

Basic Principle 1. When we have a homomorphism we have a nice correspondence between cosets of the kernel and elements in the image. In particular,

\[aK \longleftrightarrow f(a). \]

2. The Correspondence

OK. Let’s take this a bit further. If we have two elements $a, b \in G$, then the correspondence is

\[abK \longleftrightarrow f(ab). \]

Since $f(ab) = f(a)f(b)$, this suggests an operation $aK \cdot bK = abK$.

Now, we can define an operation pretty much any way we want, and this particular operation will look just like the operation in G. The one thing we have to check is to make sure that this really is a binary operation. That is, we want to make sure that when we multiply two cosets, we only get one answer. For example, if
\[aK = a'K \text{ and } bK = b'K, \text{ then } aK \cdot bK = abK \text{ and } a'K \cdot b'K = a'b'K. \text{ If } abK \neq a'b'K, \text{ then we've gotten two different answers from the same two cosets.} \]

Here's a preliminary lemma.

3. QUIZ

Suppose \(K \) is the kernel of a homomorphism \(f : G \to J \). Let \(k \in K \) and \(a \in G \). Show that there is an element \(k' \in K \) such that \(ka = ak' \).

1. To satisfy \(ka = ak' \), what must \(k' \) be?
2. Show that your \(k' \) is an element of \(K \).

4. WELL-DEFINEDNESS

The property that an operation (or functions in general) are single valued is usually referred to as the operation is well-defined. We want to prove the following.

Theorem 1. Let \(f : G \to J \) be a homomorphism, and let \(K \) be the kernel of \(f \). If \(aK = a'K \) and \(bK = b'K \), then \(abK = a'b'K \).

Proof. If we can show that \(abK \subset a'b'K \), then showing \(a'b'K \subset abK \) would be exactly the same. Let \(abk_1 \) be an element of \(abK \) (i.e., let \(k_1 \in K \)). Since \(aK = a'K \) and \(bK = b'K \), there must be elements \(k_2, k_3 \in K \) such that \(a = a'k_2 \) and \(b = b'k_3 \). Therefore,

\[abk_1 = a'k_2b'k_3k_1. \]

By the quiz problem, we know that there is some element \(k_2' \in K \) so that \(k_2b' = b'k_2' \). Therefore,

\[abk_1 = a'k_2b'k_3k_1 = a'b'k_2'k_3k_1 \in a'b'K, \]

since \(k_2'k_3k_1 \in K \). We’re done. \(\square \)

5. HOMEWORK 21

Let \(f : G \to J \) be a homomorphism, and let \(K \) be the kernel of \(f \).

1. Suppose \(x \in aK \). Then there is an element \(k \in K \) such that
 (a) \(x = k \quad (b) \ a = k \quad (c) \ k \notin K \quad (d) \ x = ak \quad (e) \) none of these

2. Let \(k' = aka^{-1} \) (same \(k \) as the one in problem 1). Then \(f(k') = \ldots \)
 (a) \(aea^{-1} \quad (b) \ aa^{-1}k \quad (c) \ f(a)f(k)f(a^{-1}) \quad (d) \ aka^{-1} \quad (e) \) none of these

3. Furthermore, \(f(k') = \ldots \)
 (a) \(ak \quad (b) \ ka \quad (c) \ ea \quad (d) \ f(a)e(f(a))^{-1} \quad (e) \) none of these

4. Therefore, \(k' \) is \ldots
 (a) in \(f(K) \quad (b) \text{ in } K \quad (c) \text{ in } aK \quad (d) \text{ in } Ka \quad (e) \) none of these

5. Note that \(k'a = \ldots \)
 (a) \(ka \quad (b) \ k \quad (c) \ a \quad (d) \ x \quad (e) \) none of these
6. We started with the assumption that \(x \in aK \). Now we know it’s also in . . .
(a) \(a^{-1}K \) (b) \(Ka^{-1} \) (c) \(Ka \) (d) \(K \) (e) none of these

7. We now know that \(aK \subset Ka \). We could just as easily show that \(Ka \subset aK \). Therefore,
(a) \(aK = K \) (b) \(Ka = K \) (c) \(K = G \) (d) \(aK = Ka \) (e) none of these

Definition 1. A subgroup \(H \) of a group \(G \) is said to be normal, if \(aH = Ha \) for every \(a \in G \).

8. What do problems 1-7 show?
(a) The kernel of a homomorphism is always a normal subgroup.
(b) Any subgroup called \(K \) is normal.
(c) Every subgroup of \(G \) is normal.
(d) The problems don’t show anything, but I showed my doggie at Westminster.
(e) none of these

As with cosets, we can define \(aHb = \{ ahb \mid h \in H \} \).

9. Suppose \(H \) is a normal subgroup. If \(h \in H \), then \(aha^{-1} . . . \)
(a) is equal to some \(h' \in H \). (b) is equal to \(h \). (c) is equal to \(e \). (d) \(a^{-1}ha \) (e) none of these

10. Suppose \(H \) is a subgroup of \(G \), and \(aHa^{-1} = H \) for every \(a \in G \). Then \(H \) is . . .
(a) a normal subgroup of \(G \). (b) a kernel of \(G \). (c) equal to \(G \). (d) a homomorphism.
(e) none of these