1. In the figure below is a trefoil T and a figure-eight knot F. Draw the connect sum of these two knots $T \# F$.

This would take some work for me to draw, and I’m guessing you all can do this one.

2. We know that the Conway polynomial of T is $\nabla_T = 1 + x^2$ and $\nabla_F = 1 - x^2$. What is the Conway polynomial for $T \# F$? Show your work and explain what you’re doing.

$$\nabla_{T \# F} = \nabla_T \cdot \nabla_F = (1 + x^2)(1 - x^2) = 1 - x^4$$

3. We do not know that the unknot is the only knot with a Conway polynomial $\nabla_K = 1$. There may be others. Suppose $A \# B = U$, where U is the unknot. Do you know what ∇_A is? Explain how you know.

Conway polynomials are polynomials with integer coefficients. Since the degrees add, when polynomials are multiplied, and 1 has degree zero, ∇A and ∇B must have degree zero. Degree zero polynomials are constants, so ∇A and ∇B must be integers. They also must be multiplicative inverses, and so $\nabla A = \pm 1$.
4. Shown below, the Mystery Knots A and B taken together form an unlinked link C. Show using the Conway polynomial equation that $\nabla_C = 0$.

$\nabla_R - \nabla_L = x\nabla_S$

The right- and left-handed versions of this link are the same (flip B over and then over again). Therefore, you get $\nabla_R - \nabla_L = 0 = x \cdot \nabla_C$, and $\nabla_C = 0$.

5. Draw a picture of a trefoil. Draw two non-trivial loops a and b (your choice). Now draw a^2b^{-1}. Loops are oriented, so don’t forget your arrows!

I would draw a through one leaf of the trefoil, and b through another. The loop a^2b^{-1} would go through the one leaf twice, and then through the second leaf backwards once.
6a. Consider a six-hour clock (we’re talking \(\mathbb{Z}_6 \), and 6 is at the top). Let \(j \) represent jumps of \(j \) hours. For each \(j \), let \(k \) be the number of jumps it takes to start at 6 o’clock and get back to 6 o’clock. For each \(j = 1, 2, 3, 4, 5, 6 \), find the corresponding \(k \).

For \(j = 1 \), \(k = 6 \). For \(j = 2 \), \(k = 3 \). For \(j = 3 \), \(k = 2 \). For \(j = 4 \), \(k = 3 \). For \(j = 5 \), \(k = 6 \). For \(j = 6 \), \(k = 1 \).

6b. Explicitly describe a process that will find \(k \) for any positive integer. You may use language such as “Divide by eight, take the remainder, subtract two, . . . ” You may also refer to your answer in problem 6a.

Were assuming that were in \(\mathbb{Z}_6 \). Given \(j \), find the integer 1, 2, 3, 4, 5, or 6, that is equivalent modulo 6 to 6. That is, divide by 6, and take the smallest positive remainder. Call this \(j \). Find the greatest common divisor for \(j \) and 6. Call this \(d \). Then \(k = 6/d \).

7. List out all the subgroups of \(\mathbb{Z}_{15} \). For each subgroup, list out all the left cosets. Express your answers in set notation (e.g. \{ 1, 5, 9, 11 \}).

\[
\begin{align*}
\{ 0 \} & : \{ 0 \}, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 4 \}, \{ 5 \}, \{ 6 \}, \{ 7 \}, \{ 8 \}, \{ 9 \}, \{ 10 \}, \{ 11 \}, \{ 12 \}, \{ 13 \}, \{ 14 \}.
\{ 0, 5, 10 \} & : \{ 0, 5, 10 \}, \{ 1, 6, 11 \}, \{ 2, 7, 12 \}, \{ 3, 8, 13 \}, \{ 4, 9, 14 \}.
\{ 0, 3, 6, 9, 12 \} & : \{ 0, 3, 6, 9, 12 \}, \{ 1, 4, 7, 10, 13 \}, \{ 2, 5, 8, 11, 14 \}.
\end{align*}
\]

\(\mathbb{Z}_{15} : \mathbb{Z}_{15} \).
8. Let \(G \) be a group, and suppose \(H \) is a subset. Consider the following theorem. If \(H \) is non-empty and for any pair of elements \(a, b \in H \) we know that \(ab^{-1} \in H \), then \(H \) is a subgroup. Fill in the blanks in this proof.

There is some element \(a \in H \), because \(H \) is non-empty.

Therefore, \(a, a^{-1}, e \in H \), so \(a^{-1} = \) must be in \(H \).

Similarly, \(e, a \in H \), so \(ea^{-1} = a^{-1} \) must be in \(H \).

It follows that for any \(a \in H \), \(a^{-1} \in H \).

Suppose \(a, b \in H \). We know that \(a^{-1} \in H \).

Therefore, \(a, b^{-1}, ab^{-1} \in H \), and so \(ab^{-1} = ab \in H \).

We have shown that the operation is closed in \(H \), the identity is in \(H \), and for each element of \(H \), its inverse is also in \(H \).

Therefore, \(H \) must be a subgroup of \(G \).

9. Draw the subgroup lattice for \(D_4 \).

The thing in the lecture notes was wrong. It should look like